Contents

Introduction ... 2
Assessment at a glance ... 3
Paper 1 ... 4
Paper 2 ... 113
Paper 3 ... 218
Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge International AS and A Level Geography (9696), and to show how different levels of candidates’ performance relate to the subject’s curriculum and assessment objectives.

In this booklet a range of candidate responses has been chosen as far as possible to exemplify grades A, C and E. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For ease of reference the following format for each paper of the subject has been adopted:

Each question is followed by an extract of the mark scheme used by examiners. This, in turn, is followed by examples of marked candidate responses, each with an examiner comment on performance. Comments are given to indicate where and why marks were awarded, and how additional marks could have been obtained. In this way, it is possible to understand what candidates have done to gain their marks and what they still have to do to improve their grades.

Past papers, Principal Examiner Reports for Teachers and other teacher support materials are available on http://teachers.cie.org.uk
Assessment at a glance

- Candidates for Advanced Subsidiary (AS) certification take Paper 1 only.
- Candidates who already have AS certification and wish to achieve the full Advanced Level qualification may carry their AS marks forward and take just Papers 2 and 3 in the exam session in which they require certification.
- Candidates taking the complete Advanced Level qualification take all three papers.

<table>
<thead>
<tr>
<th>Paper 1</th>
<th>Core Geography</th>
<th>3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates answer questions in three sections. In Section A, they must answer five of six questions on the Physical and Human Core topics for a total of 50 marks. In each of Sections B and C, candidates answer one of three structured questions based on the Physical (Section B) and Human (Section C) Core topics, for a total of 25 marks in each section. See Description of components in this booklet for more details.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% of total marks at AS Level</td>
<td>50% of marks at A Level</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper 2</th>
<th>Advanced Physical Options</th>
<th>1 hour 30 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates answer two structured essay questions, each on a different optional topic, from a total of eight questions based on the Advanced Physical Options syllabus, for a total of 50 marks. See Description of components in this booklet for more details.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25% of marks at A Level</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper 3</th>
<th>Advanced Human Options</th>
<th>1 hour 30 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates answer two structured essay questions, each on a different optional topic, from a total of eight questions based on the Advanced Human Options syllabus, for a total of 50 marks. See Description of components in this booklet for more details.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25% of marks at A Level</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Papers 2 and 3 assess the Advanced Geography Options. These are separate 1½ hour exams, but will be timetabled for the same date and session. A short break (maximum 15 minutes) is allowed between Paper 2 and Paper 3.

Teachers are reminded that a full syllabus is available on www.cie.org.uk
Paper 1

Section A

Question 1

Hydrology and fluvial geomorphology

1. Photograph A shows features of a meander on the River Swale in North Yorkshire, UK.

 (a) Identify the features labelled in Photograph A.

 (i) A
 (ii) B

 [2]

 (b) Describe the processes that lead to the features you have identified in (a).

 [5]

 (c) Briefly explain how a floodplain is formed.

 [3]

Photograph A for Question 1

A meander on the River Swale in North Yorkshire, UK
Mark scheme

1 (a) Identify the features labelled in photograph Z.

 (i) A
 river cliff [1]

 (ii) B
 slip off slope/point bar [1]

(b) Describe the process that leads to one of the features you have identified in (a). [5]

A well labelled diagram can get 2/3 marks.

![Diagram: Processes on a meander bend](image)

Candidates will describe either the slip off slope/point bar or the river cliff.

River cliff

Water flows fastest on the outer bend of the river where the **channel is deeper** and there is **less friction**. This is due to water being flung towards the outer bend as it flows around the meander, this **causes greater erosion** which deepens the channel, in turn the reduction in friction and increase in energy results in greater erosion. This lateral erosion results in undercutting of the river bank and the formation of a **steep sided river cliff**.

Slip off slope

In contrast, **on the inner bend water is slow flowing**, due to it being a **low energy zone**, deposition occurs resulting in a **shallower channel**. This increased friction further reduces the velocity (thus further reducing energy), encouraging further deposition. Over time a small beach of material builds up on the inner bend; this is called a **slip-off slope**.
(c) Briefly explain how a floodplain is formed.

River transportation is an essential process in the formation of a floodplain. At this stage, the river will carry a large load, by solution and suspension and also by saltation and traction. When the river floods over the surrounding land it loses energy and deposition of its suspended load occurs. The shallower depth of water flowing over the surface results in frictional drag and a reduction in velocity (speed) of flow. As the floodwater loses energy, the capacity and competence of the flood-water is reduced, leading to deposition. The heaviest materials (bedload) are deposited first nearest the channel, as these require the most energy to be transported and therefore build up around the sides of the river forming raised banks known as levees. Finer material such as silt and fine clays continue to flow further over the floodplain before they are deposited (alluvium). Regular flooding results in the building up of layers of nutrient rich alluvium which forms a flat and fertile floodplain. The slopes of the river valley border the edge of the floodplain. These slopes are known as the “bluff line”.

Example candidate response – grade A
Examiner comment – grade A

This is a somewhat variable answer but overall is worth the grade. The landforms are correctly identified in part (a). Like many candidates, both features have been explained instead of only one. The key processes are mentioned, such as helicoidal flow, but are not explained. Also, the answer is somewhat limited in its explanation of erosional processes. In part (c) most of the main aspects are covered but the answer just lacks a little detail especially on the need for repetitive flooding.

Mark awarded = 6 out of 10

Example candidate response – grade C
Examiner comment – grade C

There is one misidentification in Part (a). Point bar is taken as the feature answered in Part (b). The processes involved are explained competently but lack detail. The operation of helicoidal flow is not explained. Also, the answer lacks information on the nature of the sediment that is deposited. Part (c), on the floodplain, is answered in a very basic way. There is no account of the nature and cause of infiltration or the need for a repetition of events. A certain knowledge is demonstrated but all parts of the answer do not go far enough.

Mark awarded = 5 out of 10

Example candidate response – grade E

In part (a) only the slip-off slope is correctly identified. The location of the slip-off slope is incorrectly identified in part (b) and is confused with riffles. There is no link to helicoidal flow. The answer
demonstrates only partial knowledge and understanding. Part (c) has some merit but the diagram is unconvincing and there is only a brief explanation of overbank deposition. As with part (b), some knowledge is shown but it is very incomplete.

Mark awarded = 4 out of 10

Question 2

Atmosphere and weather

2 Fig. 1 shows a selection of average urban climatic conditions compared with surrounding rural areas.

(a) Should the table state ‘more’ or ‘less’ in the place of:

(i) X,

(ii) Y? [2]

(b) Using Fig. 1, explain the differences in temperature and precipitation between an urban and a rural area. [5]

(c) Give reasons why air pollution is higher in urban areas. [3]

Fig. 1 for Question 2

Average urban climatic conditions compared with surrounding rural areas

<table>
<thead>
<tr>
<th></th>
<th>Urban vs. Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation:</td>
<td></td>
</tr>
<tr>
<td>Sunshine</td>
<td>5% to 15% less</td>
</tr>
<tr>
<td>Duration:</td>
<td>in urban areas</td>
</tr>
<tr>
<td>Temperature:</td>
<td></td>
</tr>
<tr>
<td>Winter minimum</td>
<td>1 to 2°CX...... in urban areas</td>
</tr>
<tr>
<td>(average)</td>
<td></td>
</tr>
<tr>
<td>Wind Speed:</td>
<td></td>
</tr>
<tr>
<td>Annual Mean</td>
<td>20% to 30% less</td>
</tr>
<tr>
<td></td>
<td>in urban areas</td>
</tr>
<tr>
<td>Fog:</td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>100%Y...... in urban areas</td>
</tr>
<tr>
<td>Precipitation:</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5% to 10% more</td>
</tr>
<tr>
<td></td>
<td>in urban areas</td>
</tr>
</tbody>
</table>
2 Fig. 1 shows a selection of average urban climatic conditions compared with surrounding rural areas.

(a) Should the table state “more” or “less” in the place of:

(i) X,
 More [1]

(ii) Y?
 More [1]

(b) Using Fig. 1, explain the differences in temperature and precipitation between an urban and a rural area? [5]

Temperature
Human activity in urban areas produces heat (from humans, factories, car fumes...). The albedo of urban areas is lower, allowing for greater absorption of energy, and subsequent release during the night. The buildings are also stores of heat, which can be subsequently released. In addition there is less evaporation so less energy is needed for the evaporation process, hence more available in the form of heat.

Precipitation
The higher temperatures and convectional heating (thus strong thermals) leads to an increased likelihood of thunder storms and hail in urban areas. Also an increase in condensation nuclei.

(c) Give reasons why air pollution is higher in urban areas. [3]

The burning of fossil fuels, industrial processes and car fumes are three factors which cause an increase in the pollutants in urban areas compared with most rural areas. Carbon dioxide (as well as sulphur dioxide and nitrogen oxide) levels are thus increased. Also an increase in particulate matter.

Any 2: max 2 on either one
Section A

2.
 a) More
 b) Less

b) Firstly, sunshine duration in urban areas is 5–15% less than in rural areas because urban areas are often covered in a layer of pollution, making it harder for sunlight to break through. Breakthrough, also tall buildings provide shade for many areas. Whereas in rural areas the air is cleaner and there are no obstructions blocking sunlight. The temperature in urban areas is warmer in winter as pollutants, reflected long-wave radiation over urban areas, keeping them warmer. Also heat is given off from surfaces of urban areas at night as they absorb much radiation in the day. In rural areas, less of terrestrial radiation is given off so heat is lost, and the greenhouse effect does not have as much influence. Wind speed is 20%–30% less in urban areas there is not as much long-wave radiation being trapped by pollutants above rural areas, also at night many rural areas are in flood basins, therefore cold air sinks into these places, reducing the temperature. Precipitation is 5% to 10% more in urban areas as there is more condensation.
Examiner comment – grade A

Part (a)(i) is correct but not (ii). The answer to part (b) is very comprehensive and its great merit is that it continually compares urban with rural situations. The start of the answer is slightly off the focus of the question, but the main part of the answer is clearly focused with a good balance between temperature and precipitation. The only blemish is the failure to explain the albedo effect and the heat given off by human activities. The explanation of precipitation differences is thorough. The account of pollution only lacks some indication of the nature of the pollutants.

Mark awarded = 7 out of 10
Example candidate response – grade C

2.
 a) i. more
 ii. less

 b) The temperature is slightly higher in urban areas than surrounding rural areas because of a number of reasons. In urban areas, buildings and concrete retain heat for longer and slowly release the heat when it gets colder. This means that the temperature range in urban areas is more moderate than rural regions. Unnatural and man-made heat sources, such as radiators, are obviously more prevalent in urban areas and this helps to raise the average temperature. Air pollution and smog in urban areas can also increase the amount of radiation 'trapped' in the area and subsequently raise temperatures.

 There are also various factors which contribute to higher levels of precipitation in urban areas. Potentially, the site of an urban settlement can lead to increased rainfall, particularly (relief rainfall). Towns and cities situated on the top of hills
Examiner comment – grade C

Part (a)(i) is correct but (ii) is incorrect. In part (b), the candidate clearly understands that buildings etc. retain heat but there is no explanation as to why. The answer also recognises the role of heat sources in urban areas. The role of air pollution is also recognised. The explanation for precipitation differences wanders off the point into relief rainfall, arguing that many towns are situated on hills. The candidate does recognise the role of convection but omits condensation nuclei. There is little direct comparison between rural and urban areas. Thus, the knowledge and understanding is partial, but the answer is not without merit. In part (c), there is no mention of the nature of the pollutants and the answer is confused over water vapour.

Mark awarded = 5 out of 10
Example candidate response – grade E

Examiner comment – grade E

Part (a) (i) is correct but part (ii) is incorrect. In part (b) there is a partial explanation but with serious limitations. The candidate recognises that concrete etc. absorbs short wave radiation and then re-radiates it at night but there is no explanation. The precipitation in urban areas is related to convection but again with little explanation and there is no mention of condensation nuclei. There is no comparison with rural areas. In part (c) there is a very basic mention of industries producing pollutants but no detail. The candidate then gets a little confused in trying to explain smog. Overall, the answer demonstrates some basic knowledge but with large gaps.

Mark awarded = 4 out of 10
Question 3

Rocks and weathering

3 Fig. 2 shows a landslide.

(a) Name and briefly describe the feature named A. [2]

(b) Name and briefly describe the feature named B. [2]

(c) Explain the role of rock type and structure in affecting the movement and stability of slopes. [6]

Mark scheme

(a) Name and briefly describe the feature named A.

A = shear, failure or slip plane, plus brief description [2]

(b) Name and briefly describe the feature named B.

B = scar or back slope, plus brief description [2]

(c) Explain the role of rock type and structure in affecting the movement and stability of slopes.

There is a wide range of factors that can be used. Beware the inappropriate terms such as ‘hard’ and ‘soft’. Jointing and bedding planes will affect rock falls and planar slides. Permeable over impermeable can lead to instability. Clays and mudstones are usually more affected by mudflows and sometimes rotational slides. Better candidates might refer to the nature of weathering profiles in influencing slope stability. [6]
Example candidate response – grade A

3. Feature A is the glide plane. This is usually the stronger unweathered rocks which the partially weathered material sits upon.

4. Feature B is the cliff face or the flat rupture surface. This is the debris which flows down along the slide plane and consists of the weathered material.

5. Rocks type and structure play a significant role in the development of slopes. In rocks with alternating layers of resistant and less resistant rocks, the less resistant rocks may be exposed to agents of erosion and weathering. Such as where clay overlies limestone, rainfall may saturate the clay and make it less stable hence allowing it to slide over the more resistant limestone. Additionally, rocks which contain joints or bedding planes may allow water to pass through the bedding planes or joints and as a result, there is less internal cohesion, reduced friction and the rock may slide over the slide plane at a later date. Where an impermeable layer or regolith sits over impermeable rocks, infiltration is impeded and
Examiner comment – grade A

In part (a) (i) the feature is correctly identified but there is no description and the answer trails off into explanation. In part (ii), the feature is partially identified but then there is a description of material that has moved and not the feature itself. In part (b), the candidate does show an understanding of slope stability and the factors governing it. The answer recognises the importance of the juxtaposition of rock types, the role of water and uses terms such as cohesion and friction correctly. Also, the candidate understands the nature and importance of pore water pressure. This is a very comprehensive and accurate answer.

Mark awarded = 7 out of 10

Example candidate response – grade C

Examiner comment – grade C

Part (a) identifies both features. The description of the features is not as clear as it might be, but is along the right lines. In part (b) the candidate does recognise the concepts of shear strength and shear stress and does know that water has a role but gets confused over impermeability with little understanding as to why instability occurs. The candidate uses terms such as ‘hard’, which are not very useful. The answer then becomes confused with angle of rest and the nature of granite and basalt. This answer demonstrates that marks can be awarded in a variety of ways. There is some valid understanding but it is not consistent.

Mark awarded = 5 out of 10
Example candidate response – grade E

3. A bedding plane.

b. A rockface or cliff (a crater in some cases).

c. A slope, has a certain degree of stability and strength which prevents it from giving way in a form of mass movement. The rock type and structure can play a role in the likelihood of slope failure.

The permeability of rock can make a big difference. Impermeable rocks, i.e. more succ that do not allow water into their structure, tend to be more stable, since this prevents weathering from taking place inside. The rock, the slope stability refers to how stable and strong a slope is, if the rock is not being weakened and weakened inside then this will decrease the chance of slope failure as the rock remains strong.
A rock such as limestone as found in North Yorkshire is at Malham, is porous and permeable, it allow water into its structure, allowing weathering to take place which will weaken its structure, and the added physical weight of the water may add to the stress on the slope, causing it to give way. It is for this reason that limestone, clayey slopes are more vulnerable and unstable.

The avenser density of joints and bedding planes can also add to slope stability and instability, bedding planes are the horizontal joints found in rock and are common in sedimentary rock such as chalk, these provide the perfect point at which a slope may give way in the form of a hill or slide, for example Holbeck Hall, scarborough. The clay slide and away following the added pore water pressure (rain in rock) and are available slip plane.

Chemical structure can also make a difference, for example the feldspar found in granite can, when in contact with water, change its composition and turn into kaolinite, which is simplifying a powder and can be washed away, making the remaining rock more vulnerable, weaker and the overall slope less stable and more likely to experience slope failure.

Examiner comment – grade E

Both features are misidentified in part (a). The answer to part (b) belies the lack of success in part (a). It is a lengthy answer which demonstrates sound knowledge and understanding of some of the factors leading to instability. The role of weathering is noted as well as rock structure such as joints and bedding planes. The Holbeck Hall landslide is a good example to use. This part of the answer suggest a competence beyond grade E but is let down by part (a). This demonstrates the need for consistency throughout an answer.

Mark awarded = 4 out of 10
Question 4

Population

4 Fig. 3 shows the top 10 risk factors to health for MEDCs and LEDCs in 2002 according to the World Health Organization.

(a) Using Fig. 3, identify the greatest risk factor to health in:

(i) LEDCs,

(ii) MEDCs. [2]

(b) Use data from Fig. 3 to describe the impact of ‘unsafe sex’ on length of life in LEDCs and MEDCs. [3]

(c) With the help of examples, briefly explain why it is difficult for governments to address the health issues identified in Fig. 3. [5]

Fig. 3 for Question 4

Top 10 risk factors to health for MEDCs and LEDCs in 2002

Key

- MEDCs
- LEDCs

percentage of years of life lost

- nutrition
- unsafe sex
- blood pressure
- tobacco
- alcohol
- unsafe water, sanitation and hygiene
- cholesterol
- indoor smoke from solid fuels
- overweight
- low intake of fruit and vegetables
4 Fig. 3 shows the top 10 risk factors to health for LEDCs and MEDCs in 2002 according to the World Health Organization.

(a) Using Fig. 3, identify the greatest risk factor to health in:

(i) LEDCs,

[Poor/inadequate] Nutrition

(ii) MEDCs.

[Consuming] Alcohol

(b) Use data from Fig. 3 to describe the impact of ‘unsafe sex’ on length of life in LEDCs and MEDCs.

The percentage reduction of life is significant in LEDCs (second greatest shown), approx. 5.5% / over 5%; whereas in MEDCs it is relatively small, < 1% (the least amongst the 10 risk factors shown). An element of comparison is needed to achieve the third mark.

(c) With the help of examples, briefly explain why it is difficult for governments to address the health issues identified in Fig. 3.

For a variety of reasons, including:
– scale
– accessibility
– finance
– resistance to change
– tradition, e.g. use of fuelwood in LEDCs
– lifestyle choices
– education and literacy levels
– governance issues, e.g. corruption, maladministration
– vested interests, e.g. tobacco companies
– other

A full answer uses two or more examples (countries, initiatives, issues) and considers two or more reasons. Comprehensive answers are not required, although the best will apply to or explicitly address both LEDCs and MEDCs.
Example candidate response – grade A

Examiner comment – grade A

Both parts are correct in (a). The answer to part (b) is comprehensive but with a slight misreading of the resource. The answer to part (c) is competent with relevant points for both MEDCs and LEDCs but the depth of analysis is somewhat limited, especially for LEDCs. There are many reasons that could be addressed but both MEDCs and LEDCs are covered. This is a consistent answer across all three components and, thus, deserves the grade.

Mark awarded = 7 out of 10
Example candidate response – grade C

b) In LEDCs, it is very expensive for healthcare and for correct treatments and therefore people may not have enough money to afford it. In LEDCs, people may not be educated well enough to know and understand the risks and the diseases which can be passed on whereas in MEDCs they have chances of better education. In LEDCs the hospitals maybe not be hygienic. In MEDCs there are also less deaths as they can afford healthcare and the healthcare and treatments are normally well developed compared to that of an LEDC.

In certain countries such as Congo and Somalia, it is clear there is poverty. The government will find it hard to address situations such as problems with nutrition, unsafe sex, unsafe water and hygiene as there is political unrest in these countries. HIV is an ongoing problem in and the country does not have the money to solve the problems.

In MEDCs such as London, the government can help and address the situations such as blood pressure, tobacco, alcohol and people with health issues such as cholesterol and obesity as fast food restaurants, tobacco and alcohol are a million pubs and industries which are common in everyday life and which have been accepted into society.
Examiner comment – grade C

The answer to part (a) is correct. The answer to part (b) demonstrates the need to read the question very carefully because the question has been completely misinterpreted. The candidate tries to explain the data rather than simply describing it. This is a common error that has been referred to many times in Examiners’ Reports. The answer to part (c) does discuss both MEDCs and LEDCs with relevant arguments but lacks detail in the argument. A greater depth of detail is needed in the discussion or a wider range of issues, in order to achieve higher marks.

Mark awarded = 5 out of 10

Example candidate response – grade E

4
(a) Nutrition £
(b) Alcohol consumption £
(b) Unsafe sex has a significant impact in the life expectancy of people in LEDCs. Figure 9 shows that it can reduce it by 8.5 percent, which judging by normal life expectancy in LEDCs, which tend to be much lower than MEDCs, it is a huge decrease in
Examiner comment – grade E

The answer to part (a) is correct. In part (b), the data have been misread which makes the answer incomplete. The answer to part (c) is ill-focused and descriptive rather than explanatory. The points made are basically relevant but are not made so in the answer.

Mark awarded = 4 out of 10
Question 5

Migration

5 Fig. 4A shows the age/sex structure of migrants to Switzerland. Fig. 4B shows the age/sex structure of the Swiss born population.

(a) Compare the age/sex structure in Fig. 4A with that in Fig. 4B.

(b) Suggest reasons for the age/sex structure of the immigrant population.

Mark scheme

(a) Compare the age/sex structure in Fig. 4A with that in Fig. 4B.

A full answer requires comparison rather than separate descriptions. This includes similarities as well as differences.

Possible comparisons include:
- similar numbers under 10
- more pronounced ‘peaks’ in mid-thirties for foreign born
- second peak in mid-fifties for Swiss born missing in foreign born
- Swiss born has larger dependent population
- far fewer elderly in foreign born
- both have more female than male in the older population
Other comparative points acceptable

(b) Suggest reasons for the age/sex structure of the immigrant population.

Reasons are likely to centre on the foreign born population being economic migrants to Switzerland to varying degrees. Hence the greater number in the 25–40 age group. Might also account for higher number in 20–25 age bracket amongst foreign born. Migrants more likely to be young, so fewer foreign in upper age group – may also return to country of origin when they retire or leave work as they have enough money to secure their futures.
5.

a) The structure of Fig. 4A has many more people of working age than the structure of 4B. There are also many more older people in 4B than in 4A. The percentage of people below the age of 20 is roughly the same in both 4A and 4B. 4B has a more evenly distributed percentage of population than 4A which has a large 0-29 bracket in the 25-45 year old section. Finally 4A has a higher ratio of males to females than 4B which is firstly even except for elderly ages where females outnumber males.

b) There is a very high percentage of the population are aged between 25-45, this is because this is the age of people who are capable to work and are looking for jobs, so they have migrated for work purposes. There is also a small percentage of elderly people, as elderly people tend not to be migrate for working purposes, namely to retire in peace, they do not have to travel for distance as willingly as younger people seeking work, which most likely accounts for that feel like the trend to elderly migration population is small. There is also a relatively small number of children compared to adults, which shows us that many people who have migrated have done so for work, and do not have much time to support families. Also, there is a slightly larger number of males than females as males often migrate to work and send the money back home to their families.
Examiner comment – grade A

The key to a good answer for part (a) is a comprehensive coverage of both age/sex pyramids with use of data extracted from the pyramids. Many candidates simply notice the difference between the ages of 30 and 40. This candidate does examine the pyramids in their entirety with some data. But the amount of data back-up is limited, thus restricting the award of full marks. However, the coverage is sufficient for a good mark. The answer to part (b) is also fairly comprehensive covering both gender and age. The level of explanation is sensible but lacks detail in places. However, both answers do cover the main points outlined in the mark scheme. With a little more use of the resource, the mark could have been considerably higher.

Mark awarded = 6 out of 10

Example candidate response – grade C

The one obvious point of comparison is the large bulge experienced in fig 4a. The bulge occurs between the ages of 35 and 45, which are normally considered working age. There is a bulge in fig 4b around the same time, however it is much smaller only reaching around 0.75% compared with fig 4a which reaches around 1.5%.

A second point of comparison is the large difference between the size of the older population (50+) in fig 4b compared with 4a. Even at 80 years old 4b can still reach 0.5% on the women’s side whereas on 4a they the graph can barely reach 0.1%.

It is normally considered that working age (16–65) people are the most likely to move between countries. That is why there is such a sizeable bulge between those ages. Extending beyond the original population other peaks age groups of the population by 0.5%.

One reason why the higher part of the period is so small 0.1% could be due to the immigrants wanting to move back to their homeland taking. After originally coming to that country to work, they decided to move back home.
Examiner comment – grade C

There is much to credit in the answer to part (a) in that the candidate does extract information from the pyramids. The answer concentrates on the bulge in the age range 25–45 and the older population but ignores the younger age groups. However, the analysis is quite detailed. In the answer to part (b), two relevant points are made about the working and old age populations, but the level of analysis is limited. With quite minor additions to both parts, this answer could be raised considerably. The difference between this and the exemplar for a grade A is merely the comprehensiveness of the detail.

Mark awarded = 5 out of 10
5a) The Swiss ban population 4b shows that there is an increasing number of old dependents Those living above 65+ ac compared to figure 4a. Figure 4b shows there is a higher number of females living past the age of 80 as compared to the males. Figure 4b shows that there is a higher proportion of both males and females between 30 and 40 years of age as compared to figure 4b. Figure 4b seems to be portraying more of stage 4 of the DTM and figure 4e showing stage 3.
In figure 4a there is about 1.2% of females

5a) at the age of about 36 as compared to the 0.7% of females living at 36 in fig B. In fig B there is about 0.49% of males living at infants 0-1 as compared to the 0.4 in fig A.
In fig A there is about 0.6% of females at the age of 36 as compared to the in fig A there is about 0.013% of males living at the age of 40 years old as compared to the 0.1% of males living at the same age in fig B.
In fig B it clearly shows that there is a lower number of economically active as compared to fig A, showing that most migrants moving to Switzerland at the working age so that they could work and get money.
Examiner comment – grade E

The characteristic of an answer at this level is an ability to describe elements of the resource but to struggle when discussion or explanations are required. This is true here. In part (a) the main bulge in the immigrant population in mid-years is identified as well as some aspects of the older population, using data extracted from the resource. But, for part (b), the candidate seems not to understand the question. Also, unsubstantiated statements, of little merit, are made.

Mark awarded = 4 out of 10
Settlement dynamics

6 Fig. 5 shows the population of selected cities in 1950 and 2005, their projected population size in 2025 and change in the cities’ world rank 1950–2025.

(a) Give the name of the city in Fig. 5 which is expected to have:

(i) the greatest increase in world rank,

(ii) the least population growth after 1950. [2]

(b) Using Fig. 5, compare the growth of New York and São Paulo. [3]

(c) Outline some of the challenges associated with the continuing growth of cities in either MEDCs or LEDCs. [5]
Mark scheme

(a) Give the name of the city in Fig. 5 which is expected to have:

(i) the greatest increase in world rank,

Kinshasa [1]

(ii) the least population growth after 1950.

Berlin [1]

(b) Using Fig. 5, compare the growth of New York and São Paulo.

Both are projected to have 21 million people in 2025 (1), but they reach it by different routes. More than half NY’s growth was before 1950, whereas SP was small (a few million). Between 1950 and 2005, SP outstrips NY and has its main period of growth. Both are predicted to grow at a slower rate 2005–2025, but SP still more than NY. (2)

(c) Outline some of the challenges associated with the continuing growth of cities in either MEDCs or LEDCs.

In MEDCs challenges include overcoming traffic congestion, ageing infrastructure, replacing unsuitable housing stock, the inner city, governance, social disorder, etc.

In LEDCs challenges include providing housing, improving or replacing shanty towns/squatter settlement, providing clean water and electricity, overcoming traffic congestion, governance, reducing urbanisation, etc. A different approach would be to consider challenges such as the lack of finance or governance issues.

Credit issues 2/3 or 3/2 on development, detail and exemplification.

Example candidate response – grade A

6.

(a)

i) Kinshasa +344

ii) Berlin

(b) New York has a negative change in world rank between 1950 and 2025 with -6. Whereas São Paulo has a positive +19 for the change in world rank. New York had a greater population total in 1950 compared with São Paulo which was significantly smaller. In 2005, São Paulo nearly doubled the population with New York and in 2025
Projected São Paulo is slightly higher compared with New York. The total population in New York is 21 million, which is the same as in São Paulo. New York is a NECD and São Paulo is a LEDC.

c) In LEDCs, for example Rio de Janeiro in Brazil, has some challenges associated with the continuing growth of cities. For instance, the levels of pollution are high from the traffic and factories which creates smog and breathing difficulties for the residents and the tourists. This leads to strains on healthcare as population growth increases. Also, with the many vehicles on the roads, congestion is another factor as there is such a high population density in LEDCs. Due to the high population densities, there is little space and overcrowding is a major issue. Factors such as lack of housing, so people have to live in shanty towns, which is unsafe, unstable and illegal land. Also, healthcare becomes strained due to the overburden pressure and sewerage systems and water supplies become contaminated. Also, due to the increase in population, there is a major factor on unemployment, so competition is high for jobs.

Examiner comment – grade A

Most candidates identified the cities correctly for part (a) so the differentiation in marks between candidates will occur in parts (b) and (c). The answer to part (b) is comprehensive noting the change in ranking and the time periods over which the growth of New York and São Paulo have occurred. The only element lacking is some indication of the populations at the various periods. The key to a good answer in part (c) is to discuss the challenges faced by growing cities. Answers, in general, tended to describe the problems but often did not translate this into why they are challenges. This answer tends to follow this trend. Some of the issues are enumerated, such as congestion and pollution, but why these are a challenge is only vaguely dealt with. Problems are not necessarily challenges. Some problems are easily dealt with. However, the problems are relevant and varied.

Mark awarded = 6 out of 10
Example candidate response – grade C

b) The growth of Sao Paulo is positive, increased a growth whilst the growth of New York has decreased. Sao Paulo and New York are both predicted to have a population of 21 million by 2025. Sao Paulo’s growth has been much quicker during the period 1950-2005 whilst most of New York’s growth was before 1950. These trends match the trends of other LDC cities who experience increased rapid growth during 1950-2005 whilst there was negative growth for MEDC cities.

c) The continuing growth of Mumbai, one of India’s and the world’s most rapidly developing cities, is being hindered by the presence of the slum Dharavi which occupies most of the perimeter of Mumbai along the coast of India. Mumbai wants to expand its city to create a greener, more environmentally friendly outer city but cannot as the disorganised sprawl of Dharavi with disorganised transport links and a population of 2-3 million is
Examiner comment – grade C

Part (a) is correct. The answer to part (b) covers most of the points but is expressed in very general terms with little quantitative information. It also wanders off the question at the end. This last point often differentiates between a grade A and grade C answer with the former being clearly focused on the question with little superfluous detail. This last point is emphasised in the answer to part (c), which is an account of Mumbai and its problems. Although some of the information could be relevant, it is not used in a focused way. Also, concentrating on only one example reduces the breadth of the analysis.

Mark awarded = 5 out of 10
Example candidate response – grade E

Examiner comment – grade E

Part (a) is correct. For part (b) there are merely a couple of very general statements. There is very little use of the resource. The answer to part (c) is merely a list of issues that could occur in an expanding city. There is no detailed discussion as to why these could pose challenges and to whom they are a challenge. Thus, the answers to parts (b) and (c) are severely limited. A significant proportion of the marks are gained from part (a), which is usually characteristic of a mark at this level.

Mark awarded = 4 out of 10
Section B

Question 7

Hydrology and fluvial geomorphology

7 (a) (i) Define the hydrological terms *groundwater* and *springs*. [4]
 (ii) Briefly describe how groundwater recharge occurs. [3]

(b) Using diagrams, show how soils and vegetation within a catchment area (drainage basin) can affect the shape of storm hydrographs. [8]

(c) Describe and explain the differences between the landforms found in braided and meandering river channels. [10]
Mark scheme

(a) (i) Define the hydrological terms groundwater and springs. [4]

Groundwater is percolated water that is held below the water table (phreatic water). Springs are flows of water where the water table intersects with the surface.

(ii) Briefly describe how groundwater recharge occurs. [3]

Recharge of the groundwater occurs when precipitation exceeds evapotranspiration and water percolates downwards to the aquifer. Needs some indication that groundwater has been depleted and fills up again.

(b) Using diagrams, show how soils and vegetation within a catchment area (drainage basin) can affect the shape of storm hydrographs. [8]

Soils that encourage infiltration (e.g. sands) will produce less run off and hence lower peak Q and longer lag times. Clay soils allow run off and hence shorter lag times and steeper limbs of the hydrograph. Dense vegetation encourages both interception and infiltration hence slowing down the arrival of water into the channel producing lower peak Q, flatter limbs and longer lag time. Sparse vegetation has the opposite effects. Can use a single soil type and single vegetation type. Max. 5 if no diagrams.

(c) Describe and explain the differences between the landforms found in braided and meandering river channels. [10]

Braided channels are straighter, broader, steeper in channel slope and contain deposited eyots and bars of gravel and sand. Some may be colonized by vegetation and thus more permanent whilst others are temporary features. Meandering channels are sinuous, asymmetrical in shape, have lower channel slopes, slip off slopes, river cliffs and pools and riffles. Much can be achieved by diagrams. Explanation is the variations in discharge in braided channels and the swinging thalweg in meandering. Does not require a totally comprehensive coverage of all landforms to achieve max. marks.

Candidates will probably:

Level 3
Have reasonable coverage and good explanations for the differences between the two channel forms. Should be explicit mention of differences, rather than an account of each. [8–10]

Level 2
Have reasonable description of the two channel forms with some comparison, but more limited explanation. [5–7]

Level 1
Present a jumble of landforms with some confusion between the two channel forms with little if any explanation. [0–4]
Example candidate response – grade A

7 a) i) Ground water is the water found in the phreatic layer, and it's permanently saturated. Springs are located where there is a gap in bedrock, and water is found in the gap. If ground stores are high enough, the water is released to the surface.

ii) Groundwater recharge occurs when high-intensity rainfall occurs, and flows such as infiltration allows rainwater into the top soil, and then water percolates through the permeable bedrock. Until the water has percolated down into a groundwater store, replacing the water from or quarry in the phreatic layer.
b) A catchment's stream hydrograph's shape is dependent on a number of factors, the type of soil, and level of vegetation can have a large effect.

If a catchment has large amounts of vegetation then the stream hydrograph will have a lower peak discharge and a more shallow rising and receding limb, than say an urban area with little vegetation and more impermeable surfaces.

This is because the increased vegetation interception and storm flow means the discharge has no go out a high and short peak. Then the rising and receding limb are shallower as infiltration is higher and more of the water can be to the channel stage via surface flow and as run-off. Whereas an urban area has high peak discharge and it's more of run-off shows as less infiltration is less prominent. Because surface run-off and water from drain pipes wets both to the channel, making the receding limb more and flatter.

Depending on the soil type the stream hydrograph will change as more or less hydro
If the soil is more tightly compacted and there are less gaps for water to infiltrate through, then surface runoff will be increased, and the discharge peak will be higher, and floods will be deeper.

On the other hand, with lower more permeable porous soil, there is more percolation and infiltration can occur, but if the soil is saturated, then runoff is long enough. This means more things, into and from the basin, are kept, which then have longer to reach the river. Thus the hydrograph shows a longer and shallower as some water is returned to soil and moisture via evapotranspiration rather than reaching the river.
Braided channels are formed where river flow is overloaded with sediment or flow in areas with clay particles settle in the stream. Due to an electric charge present by mixing of open air and in bank water, making the clay particles coagulate and settle.

In braided channels, one can find such landforms as submerged bars. These are areas of deposition which are a line to riffles, known as bars. Bars are areas where vegetation and one can think of an alluvial sediments.

River islands are formed as eddies develop and more sediment is deposited as the river changes its course. The islands build up until they are large enough to become visible above the surface of the water. Eventually, some form of vegetation may grow on it.

Vegetation:

On the other hand, where braided channels are multifurled channels, meandering river channels are singular ones that flow from the same location.
Meandering channels develop as single channels and they possess bends or so-called meanders. As the river erodes, it may form oxbow lakes, meanders, and cutoffs or bars as opposed to new islands.

Pools and riffles are the same given to the bends or meanders which are found along the deeper areas, and riffles are the coarse of streams as the velocity over the land on the lake.

Alternating bars form or bar deposits sediment on the weaker stream. The channel accentuates these until the river sinuosity is lengthened and reaches to begin its form. As the channel appears the steeper velocity is higher as the land is scoured. The river into a part on the sinuosity of the river, as the velocity decreases by the bar on the river the sediment is deposited leaving a small sub-surface layer.
Examiner comment – grade A

For some reason, candidates find sub-surface hydrology difficult; a point which was raised in the Examiner report. This candidate falls into that category and the answer to part (a) is not typical of the rest of the answer. The definition of groundwater uses another term, phreatic, which should also be defined, but isn’t. The relationship between springs and the water table is ignored or unknown. This answer flounders and makes no specific, accurate points. The answer to part (a)(ii) is thorough and does get all the main points, even if the replenishment aspect is somewhat vague. The answer to part (b) is more comprehensive than most in that it does attempt to cover both vegetation and soils separately. Many candidates combined soil and vegetation. The comparison for vegetation is that between a lot of vegetation and none, i.e. urban. The idea that different types of vegetation might be described, such as woodland and grassland, occurred to very few candidates. There are clear areas for improvement. The hydrograph sketches are vague and not very informative. However, the analysis of soils is more complete than in many answers with some attempt to explain their influence. Better hydrographs with more analysis of time lags would have raised the standard of the answer considerably. It is usually the case that meandering rivers are better understood than braided ones. This answer demonstrates this. The discussion of braiding starts unconvincingly with mention of deltas, which are inappropriate. Even alluvial fans are unconvincing with respect to braiding. Because of the mention of braiding, the discussion of clay flocculation is irrelevant. However, some of the main elements of braiding are understood even if the diagram is not very helpful. The discussion of meandering river channels is much better and quite comprehensive. Also, the diagram is more informative. Most of the important factors are discussed. This answer demonstrates that marks can be accumulated in a variety of ways and not all the parts will be answered to the same level.

Mark awarded = 15 out of 25
Example candidate response – grade C

Groundwater is the water in between the pores of the soil.
This is a type of water storage in which aquifers are found.
Water can achieve to become groundwater after percolation.
Springs are areas where water has risen from the ground to the surface. A spring can be achieved when through-flow meets a layer of impermeable rock and moves upwards to the surface.

This diagram shows a drainage basin of impermeable rock such as limestone. Impermeable rock restricts water infiltration and percolation. This
Thereafter leads more surface run-off and to a higher rising limb and peak flood discharge. The impermeable rock allows the water to flow into the hydrograph much quicker than throughflow and baseflow. Vegetation can lower the peak flood discharge and a lesser gradient of the rising limb. Vegetation increases interception such as evapotranspiration. Also the roots of the vegetation lower the flow with in the soil such as through pipes as well as surface run-off.

This diagram shows a storm hydrograph. This storm hydrograph shows a to densely vegetated catchment area such as a woodland. Due to the number of trees, the rising limb has a lower gradient and a
Lower peak discharge. This is poor because the number of vegetation is very great than it affects the output and processes such as through flow of the river. Due to the significant evapotranspiration by vegetation such as absorption or of water through the roots, the river does not reach its bank full discharge.

Rainfall

Tailwater: Due to poor the processes of movement of water such as base flow or groundwater flow, ground water level reduces in the temporary saturated zone to the permanently saturated zone. Groundwater recharge can occur through the downward movement of water such evapotranspiration and then percolation. This etc can occur after ordinary precipitation thus replacing the water that has left.

7c Braided channels formation can occur due to a number of factors. In order for braided channels to occur coarse lag material must be in the river channel. This encourages deposition. The braided river also encourage deposition to create “islands” within the channel. Due to these islands the width of the channel increases and the channel is divided into interlocking bars which at high flow of velocity. Thus due to high levels of velocity, the islands can change form and places in the river channel quickly.
Examiner comment – grade C

Overall, this is a good example of the general nature of a grade C answer. Much of the information presented is of a sound nature, but is usually lacking in some respects, often in depth of description and explanation. In part (a)(i) there is a partial explanation of groundwater but it lacks precision. The same is true for the description of springs. The general idea is there but there is no mention of water table. Unwittingly, the candidate has described the nature of a perched water table. There is a similar lack of complete detail in the discussion of groundwater recharge. The idea of recharge is sound but it is not connected to water draw down and the idea that groundwater utilisation has been greater than input because of a lack of precipitation or some other reason. The answer to part (b) is similarly partial. There is a discussion of the influence of rock, limestone, rather than soils. There is also confusion over the permeability of limestone. Thus, there is no account of the influence of soils on the hydrograph. The analysis of vegetation, using woodland as an example, is quite basic in terms of the processes but the
underlying concepts are sound. The diagram of the storm hydrograph is relevant and accurate. However, there is no direct comparison with areas lacking in vegetation. The same answer characteristics apply to the analysis of braided and meandering channel landforms in part (c). The basic idea of a braided stream is sound, although the diagram is not especially accurate, labelling braids as interlocking spurs. The analysis of meandering channel forms only covers point bars, although the description of helicoidal flow and deposition is quite good. Thus, as throughout the answer, there are major omissions and lack of detail.

Mark awarded = 14 out of 25

Example candidate response – grade E
7b) Vegetation is one of the major factors affecting storm hydrographs. Without vegetation, the lag time of the hydrograph would be shorter. The reason that vegetation affects the lag time is because when it precipitates occur, some of it will be intercepted by the vegetation and can be stored inside the plant for a certain period and be let out very slowly. As there is not as much water going to the river at one time the peak discharge of the river could be lower.

Water intercepted by vegetation

Water can be taken up by vegetation

Water held in vegetation

Water flows into river

Rivers stop with run-off

Short lag time \rightarrow Large peak discharge

Without vegetation

Short lag time \rightarrow Small peak discharge

With vegetation

Precipitation

Rivers

Time
Examiner comment – grade E

This answer is a good illustration of marks being obtained in a variable manner. The answer to part (a) (i) is much better than for most candidates. Both groundwater and springs are defined competently. It is in the rest of the question where the answer falls down. In (a) (ii) the answer does not focus on the question and is more about sub-surface hydrology than groundwater recharge. There is no indication of the groundwater being replenished. Part (b) is a very partial answer. There is no account of soils and the answer with respect to vegetation is simplistic with little detail. It is in the answer to part (c) where the candidate demonstrates a lack of knowledge and understanding. The only feature of relevance for a meandering channel is oxbow lakes. The discussion of interlocking spurs is irrelevant. The account of braiding is inaccurate in its discussion of point bars. There is one brief mention of deposition. Overall, this is a very marginal answer with large gaps in both knowledge and understanding.

Mark awarded = 10 out of 25
Question 8

Atmosphere and weather

8 (a) (i) Define the terms *atmospheric stability* and *atmospheric instability*. [4]

(ii) Describe the conditions which may lead to the formation of *dew*. [3]

(b) With the aid of a diagram, explain the generalised pattern of pressure and wind systems in either the northern or southern hemispheres. [8]

(c) Explain how the *greenhouse effect* occurs in the earth's atmosphere. How have human activities affected it and with what consequences? [10]
Mark scheme

(a) (i) Define the terms atmospheric stability and atmospheric instability. [4]

stability – where, if a parcel of air is displaced upwards it will return to its original position (because it remains cooler and heavier than the surrounding air). (2)

instability – where, if a parcel of air rises, it will continue to rise as it remains warmer than the surrounding air even though being cooled adiabatically. (2)

(ii) Describe the conditions which may lead to the formation of dew. [3]

Nocturnal (long wave) radiation (on clear nights) leading to cooling of surfaces which cool air in contact with them sufficiently to cause condensation of water vapour to droplets on vegetation etc. Three positive points needed.

(b) With the aid of a diagram, explain the generalised pattern of pressure and wind systems in either the northern or southern hemispheres. [8]

Can be achieved totally from a clearly annotated diagram/sketch map showing essentially: equatorial low, polar high and tropical high with the winds deflected appropriately as they move from areas of high to low pressure. Explanation should be in terms of the ITCZ as warmed air at the equator rises, the Hadley and Ferrel cells. Good candidates will show an understanding of the low pressure systems at the polar front.

Max. 5 if no diagrams.

(c) Explain how the greenhouse effect occurs in the earth’s atmosphere. How have human activities affected it and with what consequences? [10]

The greenhouse effect is the warming of the earth’s atmosphere with short-wave radiation readily penetrating to the surface, whereas long wave radiation from the earth is impeded by the greenhouse gases in the atmosphere. Thus less heat escapes from the earth’s surface than that arriving. The effect is increased with cloud cover and with particulate matter and certain gases in the atmosphere. Ever since humans started clearing forests and cultivating the land they have affected the composition of the atmosphere and increased the greenhouse effect, but industrialisation since the nineteenth century, pouring CO₂ into the atmosphere from burning fossil fuels, will be the main factor, plus emissions from I.C.Es and jet engines. The consequences will have been well rehearsed; global warming, polar and glacial ice melting, rising sea level, increased energy to fuel atmospheric disturbances, changing climatic patterns.

Candidates will probably:

Level 3
Accurate detail, knowledge and understanding of the science and demonstrated throughout the answer. Well balanced in covering the three demands in the question. Appropriate awareness of the scale of human factors and likely consequences [8–10]

Level 2
Covers the essential demands but lacking in some of the accurate detail. Less well balanced on consequences which may be exaggerated or less detailed. [5–7]

Level 1
Weak answers lacking accurate understanding of the science behind the topic. Limited coverage of the question with imprecision and generalisations. [0–4]
Atmospheric stability is when the rising parcel of air is cooler and denser than the surrounding air and subsides and does not continue to rise, for example in the diagram below.

Atmospheric instability is when the rising parcel of air is warmer than the surrounding air and it continues to rise and cools adiabatically until the dew point is reached and condensation takes place. For example in the diagram below.

Atmospheric Stability

Dew is formed at night under stable conditions. Air rises below dew point and condensation takes place on vegetation and dew is formed.

Snow

Dew is formed under stable conditions at night when there is long wave radiation that is taking place. The earth's atmosphere is cooled at night because of a loss of heat caused by outgoing terrestrial radiation, and the earth needs lack of insulation from the sun.
The earth surface becomes cooler and cold at night. Air rises below dew point and condensation takes place on vegetation. If there is a presence of condensation nuclei, little droplets are formed over the vegetation.

b) The atmosphere has cells.

Draw a circle with the Tropics, Polar, and Hadley cells. The Hadley cell is larger than the Polar cell.

In the Southern Hemisphere, the pressure patterns and wind systems differ according to the season. If it is in summer, the Southern Hemisphere will experience unstable conditions. The pressure pattern will be low and the wind systems very strong because of the rainfall. And in the Northern Hemisphere, it will be experiencing stable conditions because there is generally high pressure and low humidity levels. Therefore, the heat is generally transferred from the tropics to the equator and to the Poles across the general pattern of pressure and wind systems.

The general pattern of pressure and wind systems can also differ due to the amount of solar radiation that is received. Differences in the general pattern and wind systems can also differ because of the hemisphere in which the sun will be shining more brightly.
Learning solar radiation enter the earth's atmosphere as short wave radiation and energy exchanges during the day occur in the soil and at night that shortwave radiation leaves the earth's atmosphere as long wave radiation or emitted radiation. As the long wave radiation escapes the earth into the atmosphere the main greenhouse gases which are carbon dioxide and methane and to a lesser extent CFC's absorb some of that outgoing radiation and this in turn is called the greenhouse effect. To a large extent human activities have affected the greenhouse effect by industrial activities which lead to the atmosphere becoming warmer. Another example of human activities which affect the greenhouse effect are pollution from exhaust fumes which lead to an increase in global warming because the presence of a lot of hydroscopic nuclei. An increase in these pollutants can lead to the warming of the earth's atmosphere which can lead to an increase in sea levels because of the ice caps that will be melting and this could be very dangerous. An increase in the greenhouse gases could also lead to destruction of the ozone layer.

Domestic appliances that are used in homes can also lead to the greenhouse effect being affected and increasing the global temperature. And to a lesser extent human activities do not affect the greenhouse effect other things that affect the greenhouse effect are any increase in animals. Animals eating up vegetation therefore transportation cannot take place and this could lead to drought because of a lack of rainfall for example in Bolivia.

To a larger extent human activities do affect the greenhouse effect.
Examiner comment – grade A

Much of the answer operates at a level higher than the minimum for a grade A and demonstrates that knowledge and understanding is important across the full range of the syllabus. The answer to part (a)(i) is complete with informative diagrams. The account of the formation of dew for part (a)(ii) is also complete with an accurate description of the necessary conditions. It is in the answer to part (b) where the quality wavers. The description of the global pattern of pressure is incomplete and the cells are in the wrong position. The entire answer is muddled and does not really answer the question. The answer to part (c) is much better. The explanation of the greenhouse effect is sound as is the role of human activities. The wavelengths of the various radiation fluxes are correct and, mercifully, there is no mention of the (irrelevant) hole in the ozone layer. However, the consequences are discussed in very simplistic terms, thus the answer is slightly unbalanced. This highlights the need to consider all components of the question.

Mark awarded = 15 out of 25

Example candidate response – grade C
The diagram above demonstrates the global wind patterns and pressures in the northern hemisphere. This is called the tri-cellular model and is made up of the Hadley, Ferrel and Polar cell.

The system starts at the equator, where the air rises as it absorbs energy from incoming solar insolation. From here, it moves to a colder area and subsequently cools and therefore falls. Because air is rising and leaving the equator there is often a low.
pressure at the equator. This, when the air falls (roughly the tropics), a high pressure is created. If the air does not have much heat (energy), it will move via wind back to the equator where this process repeats. This is the Hadley cell.

If the air still has some energy left, it will continue north until it meets the cold, denser air mass from the poles. As the air masses are different densities, they do not mix, and therefore rise. This forms a period of low pressure where these air masses meet. The air may return to the beginning of the cell (tropics) and will fall with the rain from the hadley cell. This is the Ferrel cell.

The polar cell meets the warmer air mass and winds from the Ferrel cell and rises. It then retreats back to the poles and falls, creating a high pressure here. Winds then transport the energy and air mass back to where it meets the Ferrel cell and this repeats. This is the pole cell.

The interaction of these three cells with each other and the subsequent energy transfers are what drive high/low pressures and general wind currents.
The greenhouse effect is a natural effect which creates the warm environment that we live in. Without it, humans would not be able to exist.

The simplified diagram above shows the basics of greenhouse gases. Short-wave UV energy from the Sun enters the ground, warming it up (approx. 51%, after reflection by clouds/snow etc.).

The ground then emits this energy as long-wave IR. Gases in the atmosphere absorb this outgoing radiation back to the Earth's surface. This traps the energy within the Earth's atmosphere, warming the Earth up to hospitable levels.

The gases which absorb outgoing...
Radiation are called greenhouse gases. Examples of these are CO₂, methane, water vapour, and Nitrous Oxide compounds, or NO₂ gases.

Human activities over the last 100 years have seen a large increase in industrialisation and mechanisation. One of the side effects of industrialisation is the production of CO₂, which is common to many industrial processes. This has led to widespread use of cars, which also produce CO₂, which is also producing CO₂. This has also added to the enhanced greenhouse effect.

The enhanced greenhouse effect is when a rise in the amount of greenhouse gases means a rise in the amount of outgoing IR radiation neglected.

The industrialisation of agriculture has led to more animals being produced, producing more CO₂ gases.

The gradual warming of the atmosphere due to the enhanced greenhouse effect is making the world hotter. This means the polar ice caps are melting, resulting in higher sea levels, and on increased vulnerability to the low islands, especially in the Pacific, which may soon be wiped out.

Ecological systems will also be...
Examiner comment – grade C

The account of stability for part (a)(i) is thoroughly confused. The account of instability demonstrates a basic understanding of air reaching saturation and continuing to rise but little reasoning for the continued uplift. The explanation of dew is sound but is incomplete in some respects. The significance of clear nights, the escape of long-wave radiation, and the fall in temperature, is sound. It just lacks the idea than cooler air is unable to hold as much moisture, leading to condensation. The answer to part (b) is unbalanced. There is an accurate diagram of the tri-cellular model with sensible explanation. However, there is little of relevance about winds. This is a good example of partial knowledge, which is typical of answers at this grade. The answer to part (c) is also slightly unbalanced. There is a straightforward diagram of the greenhouse effect and the account of gases is quite detailed. The causes of the enhanced effect are covered but the effects are limited to rising sea level and the extinction of some species in polar areas. Overall, a sound answer but lacking in detail and balance in some areas.

Mark awarded = 14 out of 25
8) a) Atmospheric stability is where the ELR is less than the DALR and the SALR. This gives leads to good stable weather conditions. Atmospheric instability is where the ELR is more than the DALR and the SALR. This leads to poor unstable weather, usually rain and thunderstorms.

b) Cooler air for condensation to occur at low levels, therefore there must be moisture in the air.

At the equator there is low pressure due to the amount of evaporation of water from the sea. This causes, evaporation, the condensation to form clouds. The northern hemisphere has high pressure due to more land and less evaporation to cause clouds. The wind pattern curves outwards towards the equator.
Examiner comment – grade E

There is a marked variation in quality in this response. However, it does demonstrate how a lack of breadth in knowledge and understanding can produce unsatisfactory answers. The answer to part (a)(i) is partial. The understanding is there but the definitions are incomplete. The return of rising air to its original position is missing for atmospheric stability and air continuing to rise is missing for atmospheric instability. The account of dew formation has nothing that is relevant. The answer to part (b) is also completely wrong. However, the answer to part (c) is sound if a little unbalanced. There is a good grasp of the causes and possible consequences of the greenhouse effect but with a surprising lack of mention of carbon dioxide. This part of the answer rescues the overall answer. The answer demonstrates that to get a mark above grade E, it is necessary to cover all aspects of the syllabus.

Mark awarded = 9 out of 25
Question 9

Rocks and weathering

9 (a) (i) Define the terms oxidation and freeze thaw. [4]

(ii) Explain the process of exfoliation. [3]

(b) Explain how the differences in the chemical composition of limestone and granite lead to differences in the ways they are weathered. [8]

(c) With the aid of diagrams describe and explain the formation of landforms found near convergent plate boundaries. [10]

Mark scheme

(a) (i) Define the terms oxidation and freeze thaw. [4]

Oxidation is a chemical weathering process. This occurs when a rock is exposed to oxygen from air or water. The most common example is when iron is present in rock, and thus turns from a ferrous state to a ferric state turning a reddish brown colour (better known as the process of rusting).

Freeze thaw is a physical weathering process. The water enters cracks in the rocks. When the temperature falls below 0°C the water freezes and expands by 9%. This forces open the crack in the rock. The temperature subsequently rises and the ice melts, allowing more water to enter and repeat the process. A sequence of diagrams would suffice for full marks.

(ii) Explain the process of exfoliation. [3]

Exfoliation is a form of physical weathering. It is commonly found with granite, where the overlying rock/material has been removed and this unloading allows pressure release. Exfoliation may also be caused by the temperature changes in the rock due to the differences in the expansion and contraction of the outer rock and that of its core. The term onion skin weathering may be referred to. Full marks may be gained from reference to only one of the causes if sufficient detail is given.

(b) Explain how the differences in the chemical composition of limestone and granite lead to differences in the ways they are weathered. [8]

The answer should focus on the differences in the chemical composition of the rocks. The answer is therefore likely to focus on the different nature of chemical weathering.

Limestone is a sedimentary carbonate rock. The small proportion of carbon dioxide within rainwater acts as a weak acid, and is able to dissolve limestone rock. This process is carbonation.

Granite is an igneous rock, formed as a result of intrusive activity. Whilst granite may take many forms, the dominant chemical composition is mica, feldspars and quartz. It is crystalline. The three minerals react differently with water – quartz remains mainly unchanged, mica releases aluminium and iron under more acidic conditions and feldspar reacts markedly, producing kaolin (china clay). This process can be termed hydrolysis.

The best answers will focus on the differences between the two rock types, rather than give a general dialogue on factors which affect the rates of weathering.
(c) With the aid of diagrams describe and explain the formation of landforms produced near convergent plate boundaries. \[10\]

The diagrams should illustrate landforms such as ocean trenches, island arcs, volcanoes and fold mountains. The explanation can include the plates moving on convection currents. An oceanic plate is denser and thus is subducted under a continental plate. An example would be the Nazca Plate subducting under the South American Plate. The oceanic crust melting at the subduction zone supplies magma which subsequently rises creating features such as island arcs. Fold mountains, such as the Andes, may also have volcanoes present. High marks can be gained with the good use of annotated diagrams. Landforms should be related to the type of convergence: continental – continental; oceanic – continental; oceanic – oceanic.

Max. 6 if no diagrams.

Candidates will probably:

Level 3
Diagrams are accurate and well labelled and are referred to in the text, or annotated so well that little text is needed, such that all the major features are covered, probably in an integrated way. For fold mountains needs mention of sediments such as accretionary wedges. \[8–10\]

Level 2
Diagrams are reasonable but with labelling/annotation a little insecure. Reference to diagrams in text possibly limited and either explanations lack some detail or some major feature(s) not discussed. \[5–7\]

Level 1
Weak diagrams with limited useful labelling/annotation. Little understanding shown of the formation of features and limited features discussed. \[0–4\]
Example candidate response – grade A

9a. Oxidation is where H₂O reacts with minerals in the rock to form oxides. This can happen when rainwater is percolating through the rock, either due to the pressure or due to freezing. Freeze-thaw is when water seeps into cracks and then freezes when the temperature drops below 0°C. It expands by 9%, which forces water to rise with pressure. This is repeated as the ice melts, and the rock turns into rock salt.

9b. Erosion is a process by which rocks, under pressure, break down due to the movement of water. On Earth, weathers, it can occur at waterfalls when the water at the top of the rock is higher while the bottom remains cold. The water creates a pressure difference, causing the rock to break the layers off. This is usually found on rock faces in the desert.
Due to this difference in make up of the two rocks, they have very different landscapes. The felsic rock is more common as it is so easily eroded and so is a kind landscape. Igneous pillows are very common as only the base rock is left after it melts by weathering away. In places it is usually shown as the other or said rain rock with underground features.

The sediment and granite become so very different when or granite become it makes them hard to look at the day or evening times due to the rock forming a cone. Processes being done help these weathering processes.

There are 3 main types of tectonic plate boundaries: Fold Mountains, Island Arcs and Volcanic plains & active ranges.

Fold Mountains are created due to continental plate boundaries colliding. They are also due to the huge pressure of the plates pushing up creating a mountain range. The Andes Mountains is an example of a fold mountain. The secondary rock can be seen as earth over the very high altitude because in this process a new one is put together by the powerful lines of rock plates.

Iceland Arcs or created when two
Examiner comment – grade A

In part (a) (i) the definition of oxidation caused many candidates problems. Most possessed a vague notion that it was a chemical weathering process involving oxygen but few were able to define it in detail. For full marks there needed to be some reference to iron oxides. This candidate only gets part of the definition. The definition of freeze-thaw caused fewer problems; the most common omission is the need for repetitive cycles. This answer produces the complete definition. The explanation for exfoliation fails to mention heating and cooling cycles. A good answer to part (b) needs a balance in the discussion between limestone and granite. It is chemical composition that requires discussion in this question, thus accounts of joints and bedding planes are not really relevant. The introduction is good, describing the essential chemical composition of both limestone and granite. However, the answer then discusses the origin of limestone and granite landforms and not the ways they are weathered. The answer to part (c) is comprehensive with all the main landforms being discussed. Some of the diagrams, such as that for fold mountains, are somewhat
unrealistic but there is a good understanding of the mechanism, even if there is a slight error in the density of the plates in one instance. Some relevant examples are provided and the candidate does recognise that the Hawaiian Islands are formed over a hot spot.

Mark awarded = 16 out of 25

Example candidate response – grade C

Section B

(i) Oxidation is when rocks react with oxygen dissolved in water to form oxides and hydroxides. The oxides and hydroxides are then more easily washed away in solution.

Freeze-thaw is when constant-free fluctuations of temperature above and below zero degrees Celsius results in water in cracks of rocks expanding when freezing and contracting when melting. This weakens the rock for further weathering. The rate of freeze-thaw depends on how...
Exfoliation is when the top layer of rock is flaked off more than the (bottom) layers, causing the layers to expand and contract more, causing the layers to swell, called consisken weathering. It occurs in hot and dry areas.

Limestone is much more easily affected by carbonation than granite, as limestone contains calcium carbonate, which when reacted with carbonic acid in rainwater forms calcium bicarbonate, this is very easily eroded by water, and so limestone is more affected by carbonation due to its chemical composition. Granite is a much darker rock though, due to the crystalline structure, in this way it is much more affected by exfoliation then limestone, as limestone is a much softer rock, meaning it reflects more radiation than granite. This also means that granite is weathered more by heating and cooling weathering. Granite is however a much harder rock than limestone due to its chemical composition, meaning it is far less affected by freeze-thaw weathering and wetting and drying weathering in comparison to limestone which is far much more easily affected by both. Finally, granite is more affected by hydrolysis, as hydrolysis is particularly effective on rocks which contain...
Orogenic belts are one major form of landform found near convergent plate boundaries. For example, the Peru-Chile trench is a result of the convergent plate boundary of the Nazca plate colliding with the South American plate. The denser oceanic Nazca plate is forced downward under the less dense continental South American plate. The Nazca plate is forced into the subduction zone and as it is forced into the upper mantle, it is this downward movement of the oceanic plate which forms the Peru-Chile trench because the ocean floor is forced down under the continental plate.
Examiner comment – grade C

In part (a)(i) the definition of oxidation is only partially correct but that for freeze-thaw is complete. The explanation of exfoliation in part (ii) is only partial, with little detail on the way rocks are heated and cooled and the need for many cycles. Unfortunately the answer to part (b) is ill-focused. The account of limestone weathering is sound, apart from getting confused between weathering and erosion. The main part of the answer wanders off the point. Much of the discussion about granite is not about its chemical composition but about physical characteristics and physical weathering. The answer does produce a few relevant points at the end but not enough to rescue the answer. The answer to part (c) is partial with no mention of volcanoes and the diagram illustrating the formation of an ocean trench is not clear. However, the main processes seem to be understood and the specific geographical examples are relevant. This is an answer with some merit but lacking in important respects.

Mark awarded = 13 out of 25
Example candidate response – grade E

9.

(i) Oxidation is the addition of oxygen to the rocks and minerals, which chemical combine to the oxygen molecules freeze from weathering. It is the expansion and contraction of water due to increasing and decreasing temperature. Water in the joints expands and increases pressure on the surrounding rock causing it to break off and shatter.

(ii) Exfoliation weathering is the ‘peeling off’ of the top layers of rock due to them experiencing a greater temperature than the rock below. The constant expansion when there is...
An increase in temperature and contraction with a decrease means the top layers will break off from the layers below.

b) Granite, a coarse-grained crystalline igneous rock, contains feldspar, mica, and quartz as the result of a slow cooling episode. It is susceptible to both chemical and physical weathering. The slow cooling which created the texture of granite also formed a frequent joint pattern, making it vulnerable to physical weathering processes like freeze-thaw. Chemical reactions caused by weathering can occur. Hydrolysis, the reaction of H+ and OH- ions of feldspar can weather away the igneous rock, reducing its size in situ.

Limestone experiences different processes of chemical weathering by processes like carbonation. Carbonation is the reaction of CO₂ with calcium carbonate when the reaction is taken away by solution. Calcium by carbonate is formed. The amount of CO₂ (carbon dioxide) in the limestone and the surrounding soil influences the rate of carbonation weathering, as well as the temperature and surface area of...
Limestone Limestone also has frequent joints, and bedding planes in which physical processes like freeze thaw can occur.

Although different in composition, both types of rock can be heavily chemically and physically weathering depending on certain factors which influence the lithology of the rock.

Convergent plate boundaries are known to form both rift valleys and the compression of rocks. These plate boundaries are the result of an oceanic plate being forced under another oceanic plate. Cold mountain to hot occur at the partially melted more dense oceanic crust producing rhyolitic magma, however folding does occur due compression at the surface when the two plates collide.

In the diagram shown, oceanic crust is compressing the less dense oceanic crust, causing it to become uplifted.
Rift valleys are also the result of a convergent plate margin. Examples include the rift valley in Arizona and East Africa. This occurs when an active magma intrusion:

1. weakens an area of rock causing the oceanic crust to be pushed away by the tension created. The faults created by the weakness then take away the weakened rock, creating a rift valley as shown in the diagram.

Both these features are the result of intense tectonic activity creating convection currents which cause the movement of the oceanic plates involved. Convergent plate margins are known to create island arcs like Japan or Hawaii, when oceanic crust partially melts during subduction and creates a band of cooled magma above sea level.
Examiner comment – grade E

The definition of oxidation is devoid of merit, whilst that for freeze-thaw weathering is lacking in many respects. The only point of any merit is the increasing and decreasing of temperatures. The explanation of exfoliation recognises the expansion and contraction of the rock, but lacks detail. In part (b) there is some useful information of the nature of granite and limestone but the account of weathering is limited. The account of granite weathering is marginally better than that for limestone. There is confusion concerning carbonation and the role of carbon dioxide. The formation of carbonic acid is ignored. Thus, this is a very partial answer, but with some knowledge and understanding. The answer to part (c) is confused and demonstrates little knowledge and understanding. The explanation of the formation of fold mountains, by the convergence of two oceanic plates, is in error as is the account of rift valleys. Hawaii is described as an island arc. This illustrates the lack of knowledge and understanding.

Mark awarded = 9 out of 25

Section C

Question 10

10 (a) (i) Give the meaning of the term natural increase rate. [2]

(ii) With the help of examples, describe the differences in natural increase between countries. [5]

(b) Outline the main features of one country’s population policy regarding natural increase. [8]

(c) Assess the results of seeking to manage natural increase in the country you chose in (b). [10]
Mark scheme

(a) (i) Give the meaning of the term natural increase rate. [2]

birth rate – death rate = natural increase rate

or the difference between gains from births and losses from deaths (excluding migration)

(ii) With the help of examples, describe the differences in natural increase between countries. [5]

Some indication of high, moderate and low rates, maybe ZPG (zero population growth), and negative natural increase (sometimes called natural decrease). Not all need to be exemplified. A sense of change over time / population dynamics is highly creditable. Will allow choice of 2 countries.

(b) Outline the main features of one country’s population policy regarding natural increase. [8]

Much depends on the chosen country, straightforward descriptions might achieve up to 5 marks. Award 6–8 marks for responses which seek to do as required – to identify “main features”, e.g. focus on educating women; incentives to promote sterilisation (India); coercion (China); tax breaks for larger families (France); responsive change from “one is enough”, to “have three if you can afford it” (Singapore).

(c) Assess the results of seeking to manage natural increase in the country you chose in (b). [10]

Again, dependent on the case chosen, but “results” may be expected and unforeseen and include the outworking or consequences, e.g. China’s “little emperors” or high percentage of unmarried men. Credit the use of data and any wider or global perspective offered.

Candidates will probably:

Level 3
Offer an appropriate assessment of the policy’s results, showing detailed knowledge and strong conceptual understanding. [8–10]

Level 2
Make a reasonable attempt, which may contain good points, but which remains limited in scope, detail or the assessment offered. [5–7]

Level 1
Offer one or more basic ideas about results. May write generally or loosely, offering little or no assessment. [0–4]
Natural increase rate can be simply described as a country/region’s Birth rate - Death rate. This excludes the influence of migration.

ii) Stage 1 of the Demographic Transition Model (DTM) shows a low natural increase rate as both the Death rate and Birth rate remain high as the country has not had time to develop. Such as Sierra Leone, due to its extended civil war.

Stage 1 countries such as Kenya and Morocco have a major increase in the rate of natural increase, due to the introduction of modern medicalisation prolonging peoples lives until they are middle aged.

Stage 2 countries are very stable countries, slowly growing with a natural increase of between 0-1 and 3-4. This is in contrast with countries in stage 3 such as India where the Birth rate is slowly starting to decrease while the Death rate remains lower.

Stage 2 is seen as a theoretical stage for countries who are experiencing a negative natural rate of increase, i.e. Death rate exceeds Birth rate. This is the case for both Italy (-1.8 nat. increase rate) and Germany (-1.9 nat. increase rate).
China.

In 1979 China introduced an act called the 'one-child policy.' It was aimed at decreasing the birth rate of the entire Chinese population, whose TFR (Total Fertility Rate) was about 7/8. It was not an obligation as demonstrated by only 20% of eligible couples signing up to it.

If you signed up to it, you received many benefits such as child support, cheaper education, and free healthcare.

It was introduced by the Chinese government because it saw a potential crisis in the future. After the great famine in the 1960s where millions starved, often to death. To avoid this happening again, the policy was introduced.

The Chinese government saw that the head dwellers needed more than one child, so they offered them the chance to have two, yet many did not sign up to it.

Another feature of the policy was the constant attention given to women workers, who when going to get a healthcare check-up from their factory, would often be given a lecture on family planning, the benefits of a small family, and education on the use of contraception.
C) Overall you would say that it was a success, because during this period in which the Chinese One Child policy was used it stopped the birth of over 300 million people. The government would point that to be a success but you need to look closer to see the results better.

It was introduced in 1979, yet from 1979 to 1982 the birth rate went from 18 up to 19.1. This was because the Chinese government at the time opened the their mindset to capitalist ideas. There were no more farming communes so the farmers had an incentive to overproduce as they could sell the profit. This resulted in the desire for more sons to be born in order to help work the land as they were now an economic asset.

Many people who are pro-policy say that one of its successes is that it helped form a tradition of having small families. However, before the policy was even introduced Birth rate was on the decline due to families being more cautious due to the great famine of the 1980s in China.

The policy achieved very little success in the rural areas, as previously mentioned. It did however prove far more successful in urban areas. This was due to the increased cost of living in the cities. Often due to education, food and transport costs that did not leave to account for in
rural areas. To therefore reduce these costs and they reduced their family size, whilst also collecting their benefits from the government.

Another reason for its success in urban areas is because a large family was not required for work as they did not need manual labour to work on a farm. Instead they received a good education enabling them to find a well paid job.

The final reason why it could be considered a success is because of its lasting legacy. Previously it was said that it did not help form a tradition, which remains correct, however it helped solidify the tradition that was already there. So much so that even now when the context for the policy is no longer available urban families are still restricting their family size.

One criticism that has been levelled at the policy is the creation of a gender imbalance due to high rates of abortion. This however is blown out of proportion. In China, Chinese cities women are considered an economic asset as they are offered the same jobs as men. But there is a point. One area where there is a significant number of "missing girls" is in India where they are considered an economic liability as the family have to pay dowry when she gets married.

In conclusion, the policy can be overall be
Examiner comment – grade A

The definition of natural increase rate is complete. The answer to part (a)(ii) gains by being comprehensive in describing the differences between several countries at different stages of the demographic transition. Not all the countries are allotted to the correct stages. However, depth is sacrificed by choosing this approach. Thus, the change over time is only really covered implicitly with reference to demographic transition. The answer to part (b), using the China One Child policy, covers many of the important issues but, in places, lacks some detail. However, the main points are acknowledged. The answer to part (c) is comprehensive but the detail is not always accurate and the answer does wander off the focus on occasions. However, it is clear that the candidate does understand the results of the One Child policy.

Mark awarded = 15 out of 25
Example candidate response – grade C

10(b) Gender selective abortions (favoring boys for labor) were restricted but not forbidden & controlled. If a family had more than one child, they had to pay a "social maintenance fee" and were stripped of any benefits. Families who had only one child were given a "certificate of honor".

The one-child policy, if looked at objectively, was a massive success. It is estimated that it stopped over 400 million births in a period of just 30 years. Such a straightforward method of controlling the rate of natural increase has however left some serious problems for China. The first problem is a gender imbalance. In 2005, males outnumbered females by 43 million. This creates large social problems in terms of partners. This was caused by the need for a boy in the rural areas of China. Men are still deemed more capable of working with agriculture in rural areas and so being restricted to only one child.
to look after them in old age, parents desperately wanted a boy. This led to the abandonment of many girls.

The second problem was the dependency ratio. Due to the boom in population and the subsequent cutting of natural increase, the 4:2:1 ratio emerged. With 2 parents, 4 grandchildren, and only 1 child, this 1 child had to look after 6 different people in old age, which caused yet more social problems.

In some cases, it can be deemed that the one child policy worked too well. In Shanghai, TFR is <1, way below replacement level. In Hong Kong, it is just over 1, again below replacement level. The decrease is bringing on the rate of natural increase lower and lower, and soon it may start to decrease. The one-child policy has been loosened a little bit in these areas, maybe (13 exceptions to the one-child policy in Shanghai) in order to get TFR to our replacement level. It is however still decreasing due to the cultural mindset of not having more than 1 child. Indeed, it must be hard to change social norms after nearly 30 years.

P.T.O
Examiner comment – grade C

This is a very unbalanced answer and gets most of its marks from parts (b) and (c). Unbalanced answers are often typical at a grade C level. The account of the China One Child Policy in part (b) is competent, but lacks detail. The answer is rescued by part (c). It addresses the question with some good, relevant examples and data backup. It is a pity that the earlier parts were not of this standard.

Mark awarded = 13 out of 25
Example candidate response – grade E

10) a) It means how fast a population is growing per year.
 can be calculated by birth rate – death rate.

 b) In LDCs such as Nigeria, Bangladesh which is in a high-fertility phase, stage 4, its pressing
 and they need a lot of aid to help workers on the farm
 and the care of them when they are old. So it’s urgent
 due to young kids to support
 when in NDCs such as Japan here people that
 they need more help to take care of the old population
 since they have a good life expectancy is increased.
 So LDCs are in order to survive, when in NDCs it’s a
 longer life expectancy.

 B) Luxembourg is a small population country with a small population
 only about 500,000 people.
 The Luxembourg government is trying to increase its population
 by giving many benefits to families that have above
 5 kids. By having 5 kids the government will lower
 the income tax as low as 20% from the normal
 45%. They also offer more grants to students for the family
 of three they also offer higher grants to families who are their
 kids study outside of the country which is very
 normal. They are doing this in order to attract immigrants
 but also to make Luxembourg to stay in the country so
 they can find the older people which were once the
 highest life expectancy. Luxembourg is this as 1 country
 that offers the most child benefits for having a large family.
 And also other laws that attract immigrants.
Examiner comment – grade E

The natural increase rate is correct. There is no reference to natural increase in the answer to part (a) (ii). This is not an answer to the question. The choice of Luxembourg to answer part (b) is unusual but the detail is relevant if somewhat lacking in detail. It is the answer to part (c) that demonstrates the lack of understanding of the question. This answer is more about migration and does not address the policy of raising the natural increase. Answers at this level often indicate an incomplete understanding of the requirements of the question.

Mark awarded = 10 out of 25

Question 11

Migration

11 (a) With the help of examples, describe the ways in which potential migrants receive information about possible destinations. [7]

(b) For any one voluntary migration, explain how push factors and pull factors combined to promote the movement. [8]

(c) ‘Migration is about taking risks.’ How far do you agree? [10]
Mark scheme

(a) With the help of examples, describe the ways in which potential migrants receive information about possible destinations. [7]

Various ways exist, including:
government agencies or advertising
media reports
tourism/holiday taking
social networks, e.g. family members, friends
returning migrants
hearsay, rumour
other
A full answer consists of three or more “ways”.

(b) For any one voluntary migration, explain how push factors and pull factors combined to promote the movement. [8]

An opportunity to use an example or case study, at any scale, and to demonstrate understanding of the two types of factors and how they operate. Straightforward explanations of one or other might achieve up to 5/6 marks. Award 7–8 marks for responses which seek to bring out how the factors combined to promote the movement.

(c) ‘Migration is about taking risks.’ How far do you agree? [10]

An open statement to allow candidates to use the material they have and respond in the manner they choose. Responses may include material about who stays (age, gender, marital status) and who goes; about managing the risk(s), e.g. through stepped migration or joining family members; about timescale; information, as in (a), or about forced migrations, which may be about avoiding risks (e.g. volcanic eruptions, conflict) as much as, or more than, taking them.

Candidates will probably:

Level 3
Develop an effective assessment of extent, with elements of agreement and disagreement and supporting evidence. [8–10]

Level 2
Provide a response which contains some valid points but which remains limited or partial in detail, development or the assessment made. [5–7]

Level 1
Make one or more simple points, with little or no engagement with the idea of risk-taking, or support. Take a descriptive, rather than an evaluative approach. Fragments and notes remain in this level. [0–4]
Migration involves the change of home, moving from one area to another. It can be permanent or temporary. Migrants can receive information about possible destinations by a variety of means.

People in the North of England heard about the prosperous South of England as well as newspapers. When England joined the

EU it was all over the radio, newspaper, and television, and they heard about the possibility of migration. They could migrate to

but they heard about the possibility of migration through people who had moved to the South first and then had returned to the North, sending or giving referrals or money to their families as well as starting businesses.

Potential migrants mostly here or receive information about possible destinations from within their community. In England, for example, in the 1950s the Jamaicans would go back to Jamaica at retirement and would tell stories about opportunities in England thus convincing them to move there to fill the gap in the labour market as well as open businesses to be able to provide for their families.

Potential migrants also receive information about possible destinations from governments. This may be possible as governments tell people about certain areas so that the gap in the market can be filled there, or so that the city can be developed more. An example of this is the Tanzanian government encouraging more people to go live in Dodoma, the new capital city so that it can prosper and businesses can be developed and so forth.

Pull factors are the attractions or factors that make certain places attractive for migrants to go there. And push factors are the factors...
The unattractive features of a settlement that encourage people to migrate elsewhere.

In England, voluntary migration occurred. It was internal, and it involved people migrating from the North of England to the South of England due to a number of factors.

The push factors of England that encouraged people to move are as follows. The weather was cold, and this was not what people wanted. Manufacturing industries, such as coal and iron industries, closed, leaving many people unemployed, thus reducing them to move to the South where employment rates were higher. Another push factor of the North included the death of trade with America due to the death of industries, so the North was deteriorating slowly economically thus forcing people to move.

Another reason as to why people moved was the push factors of the South. This was the lack of underdeveloped transport routes. There were not enough buses or trains to transport people around, thus promoting movement to the South where transport links like tubes, buses were well established especially the London Underground. The South had a lot to offer, and the pull factors included the warmer, less wet weather. This attracted people to move especially those that wanted to retire moving to places like South Hampton where it was warmer.
Another pull factor of the South was the buzz and living in cities like London, that was becoming known worldwide, where many offices were opening, thus leading to the availability of jobs at high wages.

Another pull factor of the South was the development of industries and the economy due to the new EU market, so this promoted people to move as they wanted to be close to the scope of things. There were many new European investors at this time.

And last but not least, a pull factor of the North, possibly being the major one, was the proximity to meet the closeness. People moved to areas like Devon, South Hampton where it became easier to take a boat to Europe to countries like Paris, etc.

Migration involves the movement of one person from one place to another; it can be either permanent, temporary, voluntary, or forced. People migrate due to a number of reasons.

Migration involves one leaving their home when they are uncomfortable and moving to a place they are unaware of, having to meet new people and start a new life. This is very, as not always does this work. This can be due to the fact that the person is different culturally and may be looked upon differently. An example of this is Oracle in France.
Women covering up there is not allowed as they appear to be dangerous by the police, and as seen a law is passed that they should not cover up or will be fined. Women are Muslims moving to France cannot, as they have to be prepared to be different, and culturally suppressed due to the fact that they will not be allowed to dress up the way they want to.

Migration is a risk as a person might move to a place whereby he/she is not familiar with the language thus forcing them to learn which may take long, but in the long run this will pay off as the migrant can establish themselves more.

Migration is about taking risks as one leaves a place in the section for a better area some times uncertain if whether they will get a job or not, which in case the person does not get a job, money he could have saved would have been wasted on migrating to a place whereby outcomes have not been received.

However at the same time, migration is not about taking risks as a person may only migrate to a place just for work, and they are assured a job, so the person is not suffering anything if not he/she is gaining as they are making a higher salary.

Also an added on to that is that when a person migrates they are sure of where they are going, what they are going to do and so on, thus decreasing the risk of loss as the migrant has plan.

In my opinion, or all in all migration is about taking risks so as there are constraints from that a person may come through such as cost or migration being too high, or barriers like being unable to gain a visa or legal document to enter an area as you do not qualify. So migration is just as a person goes out of their way to look for a job to live a new life all in the hopes of getting more money and living a life at high standards.
Examiner comment – grade A

This question requires three essay-type answers so the focus and detail are important. Overall, this answer is consistent in its quality with a slight drop in quality in answering part (b). The question also requires quite a breadth of knowledge and understanding. The answer to part (a) is lengthy and comprehensive with a range of information and relevant specific examples. The choice of example to use in the answer to part (b) is crucial. It is advisable that the example is well understood by the candidate. The choice of England is unfortunate as the candidate demonstrates an incomplete understanding of the geography of England. This detracts from the focus of the question. The answer recovers in part (c) with another lengthy answer about risks involved in migration. The answer is quite well balanced with both sides of the argument being discussed. The detail could be better in places, but the candidate does attempt to answer the question.

Mark awarded = 15 out of 25

Example candidate response – grade C

1) Potential migrants may receive information about possible destinations by a proposal from their current job, giving them an opportunity to move to a different country and to work there. This usually happens and is common among families. Information can also be received by family or friends who live in another country. If the potential migrant is looking for new jobs, possible destinations can be found in job advertisements in a newspaper. Information can be shown over the internet and also via television programmes about different housing in a different country.

2) Migration to look for new jobs can include various push and pull factors. Pull factors can include how poor the housing is and the standard of living is in the present country. Also, if there are not enough available jobs and if there is a poor quality of education this can lead to being attracted to a new country and its benefits, such as how well paying the jobs are and the levels of available jobs in a given country. Other pull factors can include the quality of living and the price of housing.
Examiner comment – grade C

The answer to part (a) is relatively short, but is succinct and does cover a variety of ways. The question only asks for description, so there is no need for a lengthy discussion. This clarity of thought is not present in the answer to part (b). There is no specific example and merely a reverse repetition of push and pull factors. This is a very limited answer. The answer recovers a little in part (c) but does not possess the succinctness of the answer to part (a). A limited range of issues is discussed although there is an attempt to balance the answer with arguments for and against the statement. The overall answer is variable but with sound knowledge and understanding in some parts.

Mark awarded = 12 out of 25
Example candidate response – grade E

Examiner comment – grade E

This answer becomes less coherent and focused as it works though the three parts. Perhaps this indicates that the question is a good discriminator. The answer to part (a) does describe a number of relevant ways of obtaining information, but lacks specific examples. The example chosen for part (b) is perhaps not the most appropriate. Push and pull factors are not developed. For part (c) only a very limited range of issues is discussed, without much detail. It is also a very one-sided argument. Overall, there is limited knowledge and understanding, both of the topics and the needs of the question.

Mark awarded = 9 out of 25
Question 12

Settlement dynamics

12 (a) Explain why shanty towns (squatter settlements) develop. [7]

(b) Why is it difficult for the authorities to manage shanty towns (squatter settlements)? [8]

(c) Assess the extent to which shanty towns can be seen as positive forms of settlement. [10]
Mark scheme

(a) Explain why shanty towns (squatter settlements) develop. [7]

Candidates will probably see this as push and pull forces creating rural to urban migration. More effective answers will develop why such cheap housing is needed (poverty, sheer volume of migrants but also the inability of urban authorities to cope). There is no need for separate explanations of creation and growth but credit those answers that do make the distinction. Suggest that a full answer develops at least two explanations supported with effective and appropriate examples or deals with more in less detail. For a general account with no effective example, max. 5.

(b) Why is it difficult for the authorities to manage shanty towns (squatter settlements)? [8]

The rate of growth is so rapid that it overwhelms the limited resources (financial, services, technical) that central or local governments have. There should be some focus on the problems of managing such large dynamic developments – they are often illegal, people live there to avoid being managed (or taxed), they are structurally very confusing and often shanty dwellers are hostile to the authorities. Higher responses should look at both the problems of the authorities and the complex nature of such settlements. Credit attempts to support explanations using appropriate examples. Mark on merit. Answers may take a wide range of reasons or develop a few in depth.

(c) Assess the extent to which shanty towns can be seen as positive forms of settlement. [10]

This is rehearsing the argument of whether shanty towns are areas of hope or despair. They provide cheap (often rent free) flexible housing, strong community spirit, can be upgraded as a family prospers – they are merely an early stage in rural-urban migration. They also are seen as negative due to hazards such as fire or disease, easily collapse, lack basic services e.g. sanitation, violent or crime ridden, no legal right to live there.

In reality the extent may vary over time, location, extent of the shanty and with the viewpoint of who you are in society.

Candidates will probably:

Level 3
Make a good assessment of the extent to which shanty towns are a positive form of settlement – making the point it isn’t a simple answer but it could vary over time, space etc. May point out shanty towns are far from uniform in their characters. Well supported with effective examples. [8–10]

Level 2
Provide a sound response but possibly limited in evaluation being one sided (agreeing or disagreeing) and limited in range/depth of exemplification. [5–7]

Level 1
Make an answer largely descriptive which offers little or no evaluation. Limited knowledge, with few, if any, examples. [0–4]
Section C

12. (a) A shanty town is a settlement, where they most commonly form in LEDCs. They are made of salvaged materials and most are built on illegal land. Shanty towns develop because there is a lack of housing within the CBD, so people who also can't afford housing move to the outskirts of the city where land is cheaper or to a certain extent 'free.' There are high population densities in LEDCs, so due to the overcrowding there is little space available so the available land is in shanty towns. They also develop as many people migrate to the urban areas from the rural areas to find jobs and so that contributes to overcrowding. The materials that are used for infrastructure include corrugated iron, so this is cheap and doesn't need to be maintained or repaired. Shanty towns develop on unstable, dangerous land which is too dangerous for other people to use so people decide to live there. Shanty towns are for people with low incomes and live a very cheap, low-order lifestyle. Shanty towns develop for access purposes, as they are
can be done instead of transport use that has to be paid for. Communities are built up within shanty towns, so they extend as friends and families want to be near each other. People who do the process of rural urban migration are looking for a higher standard of living, perhaps because their farm has failed or not enough income, so they look for jobs. There are a few jobs that can be produced in shanty towns such as a rubbish collector.

(b) It is difficult for authorities to manage shanty towns because the government and authorities decide to spend money in the CBD where elites live and so there is less money to be spent in shanty towns. So in other words, the order of importance decreases the further away settlements are from the CBD. Another point is that there are so many people for example in Lima, Peru, 1 million people live in shanty towns, therefore it is densely populated, so it is the authorities are to put in helping schemes for example top down schemes or site and service, then this would only affect a certain amount of people. This could cause an unequal distribution which could cause violence and social unrest. So many people would move to the area where there have been improvements and put shanty town on those for example better health care or water supply that was clean and not contaminated, so the sudden increase in
demand would put lots of pressure, then the improvements may break down or not become to any use. For instance the sewage system could contaminate the water supply. Shanty towns can be so large that it could be hard for the authorities to know where to start. Also, for different age groups, people may need different services, goods and facilities. For example the elderly might need incontinence nappies whereas, because in LEDCs the majority of the population are young, there maybe an ‘unfair divide’ on benefits. Health care is a major component that needs to be provided so that needs to increase as many people are dying younger due to their infectious and parasitic diseases such as HIV and AIDS. There maybe a lack of money for the authorities to use, that is a major problem and difficulty for the authorities. Because many people are moving into the Shanty towns, they are expanding uncontrollably so there are larger areas to cover. Also due to very high birth rates in LEDC Shanty towns, there is a lack of education and contraception, so people are unaware of the constrains and burdens they put on water supplies, lack of housing, rubbish and sewage, which is another factor that authorities find hard to manage Shanty towns.

There are many disadvantages to Shanty towns such as lack of space, overcrowding, pressure
Health care, sewage systems, water supplies, and high rates of crime. However, shanty towns can be seen as positive forms of settlements. Communities can be made, which include friends and members of families, so people can feel at home and happy. Games of football, for example, can be played which are free or at low cost and because there are many children in shanty towns, they can make a group of friends. Because people form a community, they can work together to form a 'work force' to improve the infrastructure of their homes and streets, so they can work in teams and can form self-help schemes. This can increase their quality of life, which can be seen as positive aspects.

Also, because of the densely populated area, there are high levels of unemployment so people form an informal sector. This is when people form their own type of employment which is not registered. For example, shoe makes, prostitution and washing. They do earn income, but it is still very little. So on a positive aspect, employment can be created. Shops can be built and provide essentials such as bread and water which is necessary for survival. People can look out for each other and take care of other people's safety e.g. from robbery or their homes. People can share things like clothes, building materials and cook meals for each other, so friendliness can increase. If some people are lucky enough to be educated, then they can pass some of their skills onto other people and teach them, so there are many positive aspects, although there are still many negative aspects. Therefore, shanty towns can be seen as positive forms of settlements.
Examiner comment – grade A

In part (a) there is a good definition and description of a shanty town with the role of population growth and in-migration noted. It stresses the lack of resources and peripheral location of many shanty towns. It wanders off the question at the end and lacks specific examples. A comprehensive range of issues are discussed in part (b) but there is a tendency to list rather than explain. However, it is a good answer. It must be remembered that even answers at grade A could be lacking in some respects. The key characteristic of grade A answers is a balance between all components of the parts of the question and all elements within the parts. This answer exhibits these characteristics. Thus, the answer to part (c) is well-balanced with an integrated argument. The issues raised are many and varied and the only aspect lacking is the use of specific examples.

Mark awarded = 17 out of 25

Example candidate response – grade C
Examiner comment – grade C

This question barely reaches the standard for a grade C but does exhibit all the qualities of answers at this level. The answers tend to be short, but not without merit. Detail is often lacking. Thus, the answer to part (a) is short but has some merit. The characteristics of shanty towns are described but there is little discussion of growth. The answers to parts (b) and (c) are also short and do not develop the ideas. However, there is again merit in the answers. In part (c), the ideas presented are sound but only examine one side of the question. The phrase ‘to what extent’ is not covered.

Mark awarded = 11 out of 25
Example candidate response – grade E

Section C.

12. a) In poorer countries and LDCs, not everyone has somewhere to live, as they often cannot find a job to earn a regular income, therefore they can't afford a house. These countries are often overpopulated, so there is a lack of housing, and a lack of resources in general, but there are too many people. Many of these people who can't afford housing, or who have been evicted or kicked out, have families, with (young) children. They need housing, shelter and somewhere to live, so they use the resources they can find, and they build a shelter for their family. More and more people then do the same, and a small shanty town is created and developed, as thousands of other homeless people gather and try to find shelter. Some people who have travelled from another country to find refuge also develop a part of a shanty town, as they need some shelter, and this costs nothing and is easy compared to trying to get a job and buying a house.

b) As there are so many people living in shanty towns, the authorities would have to deal with thousands of people if they were to destroy a shanty town. In Rio de Janeiro and São Paulo, there are shanty towns with over 100,000 people living there, so if they were destroyed, authorities would end up with hundreds of thousands of angry, homeless, poor people. Their 'homes' would be destroyed, and the authorities wouldn't be able to get them all housing, especially not cheap or free housing, so at
least if they are in shanty towns, nobody else has to deal with them or worry about them. As the shanty towns are built on such a large scale, it would take a long time to wipe one out, and to clear it of all people. There would then be many complaints - from both people who lived in these shanty towns and the wealthier people who don't want poorer homeless people on their streets - so authorities do not want to have to deal with all that, especially not if the shanty towns are out of the way and don't cause any trouble, and they just look bad for a country, as they can line with that. These people could also risk and protect if their 'homes' are destroyed, as they need some form of shelter, so the authorities cannot easily manage shanty towns, as it's quite complicated.

c) Shanty towns could be seen as positive forms of settlement, as so many people are given shelter from a shanty town, and they cannot live anywhere else, so it's either this or nothing. In Paraisópolis favela in São Paulo, around 100,000 people live in the poor conditions, as there are only around 20,000 - 40,000 'homes' built there. It has been there since the 1970s, and has helped give around 100,000 shelter. This is positive, as they would all be on the street otherwise, or trying to find another place to sleep which isn't out in the open. The inhabitants of the Paraisópolis favela, or a favela in Rio de Janeiro, or any other shanty town that has given many people shelter, would agree that it is a positive form of settlement, probably as
they would have nowhere if they didn’t have this. However, the conditions of shanty towns are extremely poor; usually there is no electricity or access to clean water very near, they are made from any rubbish that was available on the streets, they are cramped and squashed together, too tight in more people, and the people living there are not protected from anything or anyone. Crime rates are often high in these areas as there are many young criminals and people who are in gangs or who own weapons there. Living in a shanty town is very dangerous, as the only really positive thing about them to the people living there is that it is a form of shelter. There are a couple more positive points for governments, authorities and people who are wealthier who live nearby, such as it keeps over 500,000 people off the street — and that is only Paraisópolis favela alone, but there are many more. It also means the authorities don’t have to deal with these people, they can just leave them to it. As these people have built their own ‘homes’ and shelter, the government doesn’t need to worry about building some sort of accommodation for these people, which would take up time and money. Shanty towns are one of the lowest, dirtiest, most dangerous, not ideal, cramped forms of settlement there is, and the conditions are extremely bad, and almost unbearable. However, they are free and give shelter. There are a couple of positive arguments, but they are weak compared to the negatives. It’s good that so many people have shelter, as it’s a necessity, however it cannot really be seen as a positive form of settlement to anyone not living in them,
Examiner comment – grade E

This, overall, is a very ‘wordy’ answer with little specific detail. In part (a), there is a very basic analysis with few specific points. Rural-urban migration and the growth of shanty towns are not mentioned and there is no specific example. The detail in the answer to part (b) is slightly greater but the answer still lacks precision. The opening paragraph, about the size of shanty towns causing problems for the authorities, is the best part of the answer. Specific examples are mentioned which makes the omission of examples in part (a) somewhat puzzling. The rest of the answer is about the problems relating to eviction of squatters, which is not the main focus of the question. The answer to part (c) is lengthy but repetitive and not always focused on the question. It is a series of general statements which rarely touch on the many pros and cons that could be discussed.

Mark awarded = 8 out of 25
Section A

Question 1

Tropical environments

Only one question may be answered from this topic.

1. (a) Using Fig. 1 describe and explain the movement of nutrients in a tropical rainforest ecosystem. [10]

(b) Describe the nature of the vegetation in tropical rainforests. To what extent is this influenced by climate? [15]

Fig. 1 for Question 1

Movement of nutrients for tropical rainforest

Key

- nutrient stores
- nutrient transfers
(a) **Using Fig. 1 describe and explain the movement of nutrients in a tropical rainforest ecosystem?** [10]

Tropical forests exhibit extremely rapid rates of nutrient transfer, due to high temperatures, rainfall and humidity. Biomass (living vegetation, inc. roots) is the largest store of nutrients. Litter or decaying matter is the smallest store because nutrients are processed very efficiently by abundant decomposers including bacteria, fungi, and termites (fuelled by availability of nutrients and high temperatures). Nutrients are transferred rapidly from litter to the soil and almost immediately absorbed by vegetation. Nutrients are not stored in the soil for long; however they can be lost by leaching if the forest is cleared.

(b) **Describe the nature of the vegetation in tropical rainforests. To what extent is this influenced by climate?** [15]

 Nearly constant high temperatures and high rainfall (2000 mm) allow evergreen trees to grow all year round. Rainforest plants have many adaptations to their environment. Structure is influenced by exposure to sunlight. The upper canopy of 30 m trees allows light to be easily available at the top of this layer. Emergent trees are spaced wide apart, and are 50 m tall with umbrella-shaped canopies that grow above the forest. Because emergent trees are exposed to drying winds, they tend to have small, pointed leaves that are dark green, small and leathery to reduce water loss in the strong sunlight. These giant trees have straight, smooth trunks with few branches. Their root system is very shallow, and to support their size they grow buttresses.

With 2000 mm of rain per year, plants have made adaptations that help them shed water off their leaves quickly; many plants have drip tips that allow rain to run off and some leaves have oily coatings to shed water. This keeps them dry and prevents mould from forming. The lower canopy consists of 20 m trees and is made up of the trunks of canopy trees, shrubs, plants and small trees. There is little air movement. As a result the humidity is constantly high. This level is in constant shade.

The forest floor is usually completely shaded, except where a canopy tree has fallen and created an opening. The forest floor receive so little light that few bushes or herbs can grow there. To absorb as much sunlight as possible leaves are very large. Some trees have leaf stalks that turn with the movement of the sun so they always absorb the maximum amount of light. Some trees will grow large leaves at the lower canopy level and small leaves in the upper canopy. Other plants grow in the upper canopy on larger trees to get sunlight. These are epiphytes such as orchids. Many trees have buttress and stilt roots for extra support in the shallow, wet soil.

The heat and humidity help to break down the litter. A shrub layer receives about 3% of the light that filters in through the canopies.

Level 3

A thorough description of the vegetation nature and structure with an emphasis on the role of climate. Good appreciation of the role of climate in the adaptations made by plants. Reference to climate will include air movement, humidity, sunlight, temperature and rainfall. Structure will include mention of areas of tree fall creating openings. (12–15)

Level 2

The vegetation structure will be described and related to the climate in simple terms. e.g. evergreen trees are able to grow all year round because of nearly constant high temperatures and high rainfall. (7–11)
1a) The Gachsen diagram outlines the movements of nutrients within a tropical rainforest ecosystem as a cycle. This means that there are additional inputs to the cycle, store and loss through certain cutputs.

The largest input within the nutrient cycle is the biomass. This is due to the fact that vegetation in these areas has a tendency to be built and grown in huge amounts. Nutrients within the cycle are usually taken up from the soil (Manganese, Iron, Aluminium). Others may be received from the air while others such as glucose are formed within the plants. It leaves water, salt and nutrients to transfer to litter. However, it is vital to notice that as shown in Fig 1, that the arrow of transfer is reversed. This means that the least nutrients are transferred between these two stores given the whole cycle. When batteries nutrients are stored as litter, some may be lost from the system. This occurs when precipitation takes place and surface runoff caused by some litter to be washed away. The remaining litter is usually quickly decomposed by fungi and later transferred to the soil. As no arrow in the diagram points out, this is the second largest transfer mainly because all the litter which is not washed away eventually decays and transfers all the remaining nutrients into the soil. The soil which is the second largest store within the cycle may also lose nutrients
Nutrients are decomposed and transposed to the soil. When precipitation occurs, rapid evaporation causes leaching. Minerals leach to a high percentage which are translated to the growing plants. However, because of the shallow roots of vegetation, these nutrients cannot be reached again. Chemical weathering within the soil slowly provides nutrients. These are the extra input which are absorbed by the soil. The biomass later updates the nutrients to store them within. As the nutrient cycle is continuous, the whole process repeats itself over and over again.

In conclusion, the movement of nutrients in a tropical rainforest ecosystem can be summarised as flow, stores, inputs, and outputs. However, as there has been increased human interference within these systems, Fig cannot fully describe the actual processes occurring because it refers to an undisturbed ecosystem.
1b) Vegetation of Tropical rain forests is usually said to have reached a stage of climax climax. This means that the ecosystem has reached its maximum natural development without anthropogenic interference. Trees within this region are usually deciduous and have an all-year-round growing season. This may be attributable to the fact that diurnal temperatures range only three degrees Celsius. Moreover, daily rain and thunderstorms provide sufficient moisture to ensure the trees are green for the whole year. However, the trees still shed leaves as litter but not seasonally like savanna regions. This can be seen with the constantly present heavy and bacterial litter on the forest floor.

The tropical rainforest system consists of thick vegetation which is multi-layered. Trees in these areas may usually grow to a height of 150 meters. The thickness of these trees are caused by adaptations which force trees to compete for sunlight required for photosynthesis. In the climate here, other conditions that allow high productivity of hundreds of different tree species, the growth rate is high. The residual thickness within the forest causes trees to adapt to the survival of the fittest theory.

Eephytes are very common in tropical rainforests. Buttress roots which are very common in trees within these systems may be a result of the high water quantities required which do not need to stretch below the surface. Other plant are also characterised by having wide leaves and drip tips. This is usually to allow the
Examiner comment – grade A

(a) Uses the Gerschmehl diagram to describe a system with inputs, outputs, stores and flows. These are developed in the context of the TRF. The scales of the stores and flows are overlooked.

(b) The climatic parameters are outlined and the TRF vegetation is described in terms of both structure and characteristics. A limited attempt is made to assess climatic against other influences. The answer could have been enhanced by a more detailed description and exemplification of the nature of the vegetation.

Mark awarded = 17 out of 25
Example candidate response – grade C

1) In Fig 1, the movement of nutrients in a tropical rainforest ecosystem is shown in the diagram. Nutrients are taken up in the soil. These nutrients found in the soil are then absorbed by biomass, such as plants and animals, to produce energy needed to sustain life. Some of the energy gained is stored in leaves and other parts of the plant, while others are lost when the tree sheds their leaves or die. This forms a layer above the soil that consists of dead leaves called the leaf litter. This acts as a nutrient store, where by it provides nutrients for other living organisms. Some of the nutrients from this store is returned to the soil, while a small amount is lost completely and an adequate amount is gained from the surrounding atmosphere. In the diagram, it is also seen that the soil loses more of the nutrients than it gains, while the biomass gains more than it loses, contributing to it’s size. Leaf litter is the smallest nutrient store as it loses more than twice the amount it gains. This cycle shows how nutrients are gained and lost from the tropical rainforest ecosystem as well as transferred through
In the tropical rainforests, there are five main layers in its vegetation. These layers are a direct result of the climate in these areas as the trees adapt to the conditions available to them. The first of these layers are the Evergreens. These trees grow the tallest and can exceed 60m in height. These trees grow towards the sun light and have tall, slender, branchless trunks. These measures provide safety as animals cannot climb them and damage them. Their roots are buttress, and may raise as tall as 5m above ground level and provide support of the trees. These roots also provide a safe home for small animals. The second layer is that of the Canopy. These trees are fairly shorter than the evergreens. They get their name from their outer looking trunks which creates a canopy over the forest ground. These sun-seeking branches provides a home for small animals such as monkeys and parrots that take shelter in the branches. Because of their height, these trees also require additional support by the means of buttress roots. They grow towards the sunlight in order to produce food, through photosynthesis.

The third level of trees is that of the Sub-canopy. These trees are much shorter than the canopy and are fighting to gain what little light from the sun that is available. These trees, though many are not as clustered as the canopy, but still provide shelter for lower lying organisms. These trees may reach 16m in height and as a result do not need buttress roots. The lower level trees are called shrubs. The lower level trees consist of small trees, grass, and bushes. They have adapted to living in the shade of the larger trees and thriving on what little light is allowed to pass through the canopy and sub-canopy. These trees have short roots that quickly absorb any water in the soil. Root close to the surface, unlike the larger trees, whose roots go deep into.
Examiner comment – grade C

(a) Uses Fig.1 to follow through the flows and stores. The description is reasonably accurate but the answer lacks coherent explanation of the nature of nutrient cycling and the role of stores and flows.

(b) A developed account of the structure of TRF vegetation with some detail of adaptions such as different rooting systems. The main weakness of the answer is the lack of any reference to climate and its influences. To gain higher marks the candidate needed to evaluate the influence of the climate on TRF against other influences on the vegetation.

Mark awarded = 13 out of 25
Example candidate response – grade E

I (a) First of all there is a transfer of nutrients from weathered parent rocks into the soil. Due to the large vegetation cover in the tropical rainforest, there is a large transfer of nutrients from the soil and store in trees as biomass. There is a large store of biomass. Weathered leaves fall out from trees and decay. Therefore, there is a transfer of nutrients from the biomass to form the litter store. The transfer of nutrient is small due to a smaller area. The soil obtains an amount of nutrients from the litter. Rainfall also helps transfer nutrients to the litter store. A large amount of nutrient is transferred out of the soil by leaching.

The tropical rainforest has a large biomass store due to large amounts of vegetation.

(b) Tropical rainforest have high annual temperature (25°C - 26°C) and high annual rainfall (2000 mm). The rainfall in the tropical rainforest are intense and convectional. There is also high humidity in the tropical rainforest.

Vegetation in the tropical rainforest are evergreen to obtain sunlight for photosynthesis. Due to the high temperature in tropical rainforests, the vegetation are evergreen to obtain light for photosynthesis. The vegetation in tropical rainforests are in layers and also the crowns varies at each layer. The tropical rainforest also has a very
Examiner comment – grade E

(a) A very sparse description of Fig.1 that does not explain the nature of nutrient cycling in the TRF or how this is represented by the flows and stores shown. There is some recognition of the relative sizes of the stores and losses through leaching.

(b) A basic descriptive account of the structure of TRF vegetation with a useful diagram. There is little description of the characteristics of the vegetation or of any climatic adaptations.

Mark awarded = 11 out of 25
Question 2

Tropical environments

Only one question may be answered from this topic.

1 Fig. 1 shows a typical soil profile in a tropical environment.

(a) Describe and explain how soil forming processes lead to the development of such a profile. (10)

(b) For either the tropical rainforest or the savanna ecosystem, discuss the extent to which a sustainable approach to management can be a success. (15)

Fig. 1 for Question 1

Tropical latosol

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>pH Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah</td>
<td>light pink</td>
<td>pH 6.0–7.0</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>pH 3.6</td>
</tr>
<tr>
<td>B1</td>
<td>dark red</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe and Al</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>lighter red</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>parent rock</td>
<td>pH 4.2</td>
</tr>
</tbody>
</table>
Fig. 1 shows a typical soil profile in a tropical environment.

(a) Describe and explain how soil forming processes lead to the development of such a profile. [10]

The high annual temperature and high annual rainfall leads to rapid chemical weathering of bedrock. This leads to a deep profile, up to 30 m deep. In addition, the continuous leaf fall in the ecosystem provides a substantial litter layer. However as the decomposition is rapid the humus layer is thin and is quickly incorporated into the soil. There is high fauna activity which leads to the mixing of the organic matter. The iron and aluminium give the soil the red colour through the process of hydration. There is a lack of soil horizons. This is due to the continual leaching (of silica and other minerals). The high translocation results in much material being moved through the profile by water.

(b) For either the tropical rainforest or the savanna ecosystem, discuss the extent to which a sustainable approach to management can be a success. [15]

A sustainable approach to management helps to ensure that the ecosystem is able to replace itself at a greater rate than it is being destroyed. However this is not always possible, as some damage is difficult to overcome. In addition there are a variety of approaches to management, depending on what the case study has drawn out. The level of sustainability can be judged also on the management of other areas connected with the ecosystem discussed; for example local crafts and economy, breeding programmes and ecotourism. Thus management may encompass a reduction in the harmful use of the ecosystem or the protection and enhancement of the social and economic conditions which enable a decrease in the dependence on non sustainable practice. The examples used may draw out the conflicts that occur with the variety of strategies to management as well as how success could be measured.

Level 3
A full appreciation of the issues and success or otherwise of various schemes. Reference to examples or a detailed case study would be characteristic of this level. (12–15)

Level 2
Some appreciation of the extent that managing an ecosystem can be a success. Aware of some of the limits to the management. (7–11)

Level 1
A simplistic grasp of the ecosystem, with an outline of what a sustainable approach consists of. (0–6)
Example candidate response – grade A

Tropical environments

(a) Tropical soils are notably known as ancient soil which has suffered from long periods of weathering (both physical and chemical or even biological). Thus the soil is infertile and most of nutrients are stored in the biomass of organisms such as trees, rather than in the soil.

The litter and other organic materials decomposing on the topsoil can help to nutrient the tropical lateral. However, due to the higher precipitate rate than the evapor-transpiration rate in the tropical rainforest, the leaching process has quite significant effect on the soil. So the soluble minerals may wash off by the surface run-off, and minerals such as silica, silicon, iron could reach to the lower layer of the soil profile.

Iron and aluminium may be left on the higher layer and form sesquioxide. The sesquioxide can concentrate together to form laterite. A material which is soft when moistened but tends extremely hard when drying out. Due to the high concentration of the iron ions in the high layers of the soil profile, the horizon Bt is usually form a dark red, yellowish appearance. In the horizon Bt, the iron ions may react with water and be hydrated and related to form yellowish or redder compounds.

Since more and more soluble ions leach down the soil profile, the pH values tend to be increasingly acidic down the soil profile. The lowest layer of tropical lateral is known as parent rock or bedrock which can supply the upper layer of soil and provide some nutrients.
b) Sustainable development is defined as the usage of current resources and the usage of resources in current generation would not affect the interests of past generations. Currently, tropical rainforests have generated great amount of problems and pollution. A suitable sustainable management approach is fairly essential to tropical rainforests since the tropical rainforests play an important role in resource supply, global hydrological cycle and tropical ecological system.

Let’s use the examples in the development of Madagascar to analyse the success of the sustainable development approach.

Madagascar has lost 90% of its tropical rainforest during the past 1500 years. End the poor agricultural practices, increasing population pressure, fuel wood collection tradition, low economic development and logging have pushed people. Madagascar suffer from serious deforestation, soil erosion, soil degradation and disruption in ecosystem. It’s estimated that if the government does not take actions to regrow the unhealth development, the rainforest of Madagascar may very vanish in 15 years.

Usually, the farmers in Madagascar burn the rainforest for better farming land to grow crops. However, the land can quickly turn infertile after single harvest. So the farmers have to burn other areas for farming. This not only accelerates the process of deforestation, but also cause the soil fertilization and severe loss of soil. To solve this problem, the government of Madagascar has set up a forestry program that farmers are encouraged to grow more sustainable cash plants like rubber trees and to fruit trees instead of rice. In this case, the farmers are not needed to burn the forest any more. Also, the improved irrigation systems are introduced and a group of experts came to teach the farmers to plant more sustainably.
Examiner comment – grade A

(a) An account of the soil profile that attempts to indicate the soil forming processes that are at work. The explanation is limited but does demonstrate some understanding.

(b) A well-worked example of an attempt to sustainably manage a TRF ecosystem in Madagascar. Although sustainability is kept in mind there is only limited evaluation made of the levels of success.

Mark awarded = 17 out of 25
Example candidate response – grade C

a) The soil profile shown in Fig 1 shows how the pH level of the soil decreases with depth so that deeper in the profile the soil becomes more acidic. The reason for this is water's ability to infiltrate soils more in a more effective manner than nutrients in litter which may contain alkaline substances. In tropical environments, experience large amounts of annual precipitation; it is understandable how acidic rain could infiltrate to this extent. The first section of the soil profile has a pH of 6.7 (practically neutral) however directly under it in the second section the pH is stronger (3.6) because water can infiltrate soil better than the alkaline which may be in litter substances resting in the 1st section. The second section of the profile is described as dark red and as having iron and aluminium it is in this section where a soil will be most have the most nutrients and therefore this is where vegetation will locate their roots. This is because after this section infiltration becomes more and more difficult for substances such as leaves. They will here have broken down over a period of time by both rain water and other weathering hazards and then buried by a new layer of litter.

b) Sustainable management in the tropical
rainforest is can be successful but only to an extent. Laws regulating areas where vegetation can be cut as well as the amount which can be cut by various large profit industries or possibly TNCs is certainly extremely helpful in preserving rainforests. Regulations such as this if planned properly can result in a large and beneficial economic industry for the forest area which the rainforest is in, but can at the same time as ensuring that vegetation is not harvested at a rate from which it cannot recover or continue to grow. However, in countries which have TRFs such as much of South America there can be competition between nations - Brazil and Bolivia for example - to attract the attention of lumber harvesting industries. Being in competition with each other countries or areas with TRFs may not thoroughly consider their policies on ensuring that their management of the tropical rainforest is sustainable. They may for example (as has happened in Brazil) allow industries or TNCs to cut down more than the forest can recover from and insist as a condition for this that the two trees are planted for every one which is cut. This is not sustainable however as many of the forest’s nutrients will be in vegetation which has been cut and harvested for other purposes which means
That any new tree which is planted will have considerably less nutrients in the soil from which to grow as there will be the tree which through their leaves and eventual decomposition over time would have enriched the soil with nutrients will have been cut and used for other purposes! This concerning factor will mean that any forest which is grown from soil which has had its nutrients cycle disturbed by the cutting of trees which in them held a considerable proportion of the forest’s nutrients will never be able to grow to the height and diversity and density of the original forest.

The management of wildlife in the ecosystems of tropical rain forests are also made difficult by an area’s choice to allow timber industry however the money brought in by industries harvesting the rain forests could be used to create wildlife conservations for to ensure the wildlife is safe from loosing too much of their natural habitat.

In general it seems that management of the tropical rain forest can only be successful to an extent as competing areas with TRFs make it easier for corporations to exploit their resources and make it more difficult to sustain them. Areas with more money who will not need this timber industry as much as others and therefore will be more at liberty to create policies which ensure that no more trees are cut than are naturally replaced however regardless of the policy. The harvesting of the forest and the removal of the nutrients in the trees from the eco system has a negative effect on forests growth and so will eventually become unsustainable.
Examiner comment – grade C

(a) The account tends to repeat material directly drawn from the diagram of the soil profile such as pH value, colour and mineral content without adding any explanation or interpretation. There is only a limited appreciation of climatic inputs.

(b) Sustainability is not defined but there is some appreciation of the limits placed upon exploitation by the nature of the TRF ecosystem. This is illustrated by the use of examples of lumber extraction in Brazil and Bolivia. These examples, however, are not well developed either in terms of management strategies or sustainability, but still a much better response than part (a).

Mark awarded = 12 out of 25
a). In describing and explaining how soil forming processes lead to the development of such a profile, it is of significance to first identify the factors which attributes such formation. In brief, the ferrallitic (latosol) soil can mostly be found in the premise of rainforests. The typical rainforest is characterised with an annual amount of high rainfall, though it is also exposed of high insolation rates, putting into consideration the equatorial location of such rainforests. Both heavy rainfall and large amount of received sunlight results in the increased humidity of rainforests on ground level.

Starting off from the very top of the soil layer is the litter layer. The latosol soil has a much thicker humus than, for instance, the sub-tropic ferruginous soil due to much of the litter falling down onto the soil (e.g. leaves, animal droppings, etc.). There is also a rapid decomposition which occurs via decomposing microorganisms which thrive on humid areas. The humus layer is decomposed and will eventually become a part of the top soil (Ah-F), which is the most
The transition of color from light pink into dark red and lighter red is mostly due to the oxidation process. In the layers of B1 - B2, iron and aluminium accumulates at this certain level. When iron is exposed to air, it oxidizes and develops the red coloration of this soil layer. Both iron and aluminium can go further down the soil through percolation of water, which can be attributed by the high amount of rainfall that exists in the tropical rainforest. When the percolating water reaches the bottom, parent material, it will trigger a chemical weathering, typically with granite, breaking it into kaolin after water reacts with feldspar.

To conclude, the formation of the latosol soil is mainly attributed by the factors of climate, parent materials, and the active organisms. Climate, however, seems to be more of a defining and more significant factor compared to the others, as it is the key for other factors to contribute in the soil formation.
b). In discussing the extent to which a sustainable approach to management can be a success, it is first important to identify the type of location where such approach will be carried out. The tropical rainforest seems to be an appropriate choice in this discussion, with the Amazon Basin (South America) as an example to further analyse the extent of success of the management. As a brief introduction, the tropical environment of the rainforest is characterised with the wide array existence of trees, supported with plenty of rainfall and sunlight. Though vegetation is evergreen, the tropical rainforest is, however, called as a 'dessert of trees' due to the actuality that the soil is in fact, lacking nutrition. As such, a sustainable approach to manage this issue has at least been carried out in a number of ways.

One of such method is the shifting cultivation, involving those cultivating crops to move to new locations within the rainforest when the soil they previously utilize is no longer fertile. The Amerindians of the Amazon Basin has used this method in a long period of time to gather rations for themselves. The
Examiner comment – grade E

(a) An account that traces the movement of water through the soil with only a very limited appreciation of any soil forming processes. The candidate has knowledge, but does not necessarily apply it to the question set.

(b) Although a case study is not employed, the answer attempts to illustrate management through the practices of shifting agriculture and selective logging. Some attempt is made to assess these in terms of general sustainability, but the answer could have been improved by use of exemplification and greater explanation.

Mark awarded = 11 out of 25
Question 3

Coastal environments

Only one question may be answered from this topic.

3 Photograph A shows an area of coral reef off the coast of Antigua.

(a) Describe the distribution of coral reefs shown in Photograph A and explain the conditions needed for such coral growth. [10]

(b) Using examples, explain the factors that can produce variations in cliff profiles (cross section form). [15]
Mark scheme

(a) Describe the distribution of coral reefs shown in Photograph A and explain the conditions needed for such coral growth. [10]

The photograph shows discontinuous fringing reefs developed in shallow, tropical waters off the coast of Antigua. Some may describe the coral as a combination of fringing reefs and the discontinuous type of barrier reef. Reward any relevant observation drawn from the photograph.

The main conditions for coral growth include

- Temperatures – tropical coral only lives in water with a temperature over 18 °C but ideally between 23 °C and 25 °C – hence coral is generally restricted to tropical environments. In Bermuda, however, they are found due to the Gulf Stream bringing heat further north. They are generally absent on the west side of tropical continents due to the presence of cold currents.
- Light – coral feed on tiny algae and these need light to photosynthesise. Hence coral tend to form in shallow water where there is more light.
- Clear, oxygenated water – sediment in the water affects coral’s ability to feed and decreases the amount of light. Hence reefs are rarely found close to river mouths.
- Coral cannot live for long outside water so they are rarely found above the low tide level.

(b) Using examples, explain the factors that can produce variations in cliff profiles (cross section form). [15]

There are a number of factors – each should be supported with examples.

- Rock type – resistant rocks such as granite and basalt may form steep cliffs. So too can less resistant rocks such as clay.
- The rate of supply of sediment (cliff erosion) and removal is important. If removal equals the rate of supply, a steep cliff is formed. If supply is greater than the rate of removal a gentle cliff profile is produced.
- The orientation of bedding planes can produce steep or gently dipping cliffs.
- Climate and sea level change may produce beveled cliffs or slope-over-wall cliffs.
- A cliff with an extending wave cut platform may be protected from marine erosion and become gentler in profile through sub-aerial weathering.
- Sub-aerial processes may break down rock to produce scree like material at the base of cliffs.
- Mass movements can produce slumping and create complex cliff profiles.
- Human activity can alter cliff profiles, reprofile them or try to preserve them.

Level 3
Balanced account of a range of factors and supporting examples of different types of cliff profile. Likely to emphasise physical rather than human factors. Good levels of explanation. (12–15)

Level 2
A more generalised account of factors that are only partially related to cliff profiles. Support less strong. Description likely to be stronger than explanation. (7–11)

Level 1
Basic descriptive account of coastal erosion lacking in detail or support. Partial account. Of profiles or a misconception of profile. (0–6)
Example candidate response – grade A

New corals are formed by tiny marine living organisms known as polyps. These polyps are formed by excavations which are made up of calcium carbonate. These polyps grew together forming a large mass of rock, thus the coral reef.

In photograph A, the coral reef shown is a fringing reef. This is because it is has not characteristic formed very far off from the coast of Antigua. It is characterised by a shallow lagoon and this is evident from the photograph since there are no areas of darkness between the coast and the coral reef. It is also seaward slope that is not very steep and its platform that is the distance the coral forms before the lagoon is flat.

For such a coral growth, there are various conditions needed to support the growth. Corals grow in areas where the temperature is between 20°C to 30°C like the corals of Antigua. They grow on the eastern side of continents and especially where warm oceanic currents are present since the required temperature is present.

The corals off the coast of Antigua also grow at a depth of not less than 25 m of the sea water. This is because in order for the corals to
Coral reefs grow and survive, they need to be under submerged conditions though they can be exposed above the water surface for a very short time for example in the event of a low tide.

For corals to grow, the water needs to be salinity of about 27-40 parts per thousand, so it will be impossible to find corals growing at the place where the river enters the sea because the river carries with sediments which bring about muddy areas and the sun cannot penetrate the muddy areas to provide heat energy for the growth of corals. The salinity will also help in the formation of calcium carbonate.

There also has to be presence of sunlight which will help in the photosynthesis process of planktons which the corals feed on to survive and grow. The sea water such as the one in photograph it should be well aerated, oxygenated and this is brought about by strong wave action for corals to survive.

All these conditions will help in the growth of corals.
Cliff profiles are the general formation of cliff face top to bottom.

A cliff is a steep, rock face that is formed along the coast. There are four main types of cliff classifications and they can be produced by erosion, weathering, and mass wasting processes since the cliff is an erosive marine erosion feature.

The vertical or cliff face processes and cut the base of the cliff and cliff face processes at the face of the cliff will determine the cross section form of the cliff, accompanied by various factors.

For a vertical or cliff face cliff, its profile will be determined by the type of rock which is homogeneous, that is, it is made up of one type of rock. In order for this type of cliff to form, the bedding planes should be either vertical, horizontal or the angle of dip should be facing landwards. This is so that when erosion processes such as hydrological action where the water is compressed compressed or water percolation or corrosion act upon the cliff face, a wave-cut notch is formed and it is the overhanging collapse forming a vertical cliff.
Another cliff profile is the bevelled. It normally forms by mass wasting and weathering at the cliff face and erosion at the cliff foot. When there is a drop in the sea level and the cliff foot process are not possible, the cliff becomes bevelled.

Mass wasting and weathering acts on the cliff face which forms a concave profile on the cliff face. This mass wasting and weathering are also encouraged by the angle of cliff, which is seaward thus erosion happening faster.

Once the sea level rises, the cliff foot process is reactivated and erosion will occur on the cliff foot for example wave pounding which where the cliff is eroded by the sheer forces of the wave forming a vertical profile on the cliff foot. This is due to the rock being homogeneous and having rock joints, bedding and angle of dip towards the sea.
The hog's back profile of the cliff is affected by mass wasting and weathering processes where the whole cliff is concave shaped. This is because of the strata and angle of dip is towards the sea. Heavy rainfall for example can add weight to the rocks and the gravitational forces will exceed the resistive force of rocks and there will be mass wasting forming a hog's back cliff.
Examiner comment – grade A

(a) Good use is made of the photograph to identify the locations, context and type of coral reef. Conditions for coral growth are described and fully explained in terms of the development of coral polyps.

(b) The answer concentrates on differing types of cliff profile with each type being illustrated by appropriate diagrams of such profiles as bevelled cliffs and hogs back. The role of rock type and structure is described and the contribution of marine and sub-aerial processes assessed.

Mark awarded = 22 out of 25
Coastal Environment

3a) The coral reefs in photograph A are placed within a lagoon and they vary with their positioning. Most of the coral reefs there are seen at a short distance from the shore, showing that they are probably quite young and they are mainly fringing reefs. They are also in the shallower waters which is another indication that they are relatively young. There are a couple of coral reefs that are more centered in the lagoon, in deeper water further away from the shore meaning they are more likely to be barrier reefs.

Coral reefs need specific breeding conditions for them to grow to optimum levels. For example, they need warm water which is why they are normally found within tropical seas. Their temperature cannot go below 18°C or above 30°C otherwise the corals will begin to die. Reefs also need a firm base to begin to grow on a rocky
Coral reefs also need to have clean, clear water. There are several reasons why this is important. First, coral reefs are very sensitive to pollution and any pollution will cause significant damage. Second, there is also a need for clear water to allow the coral to stay alive. Coral reefs need light to photosynthesize, but the sunlight is filtered by the water. The sunlight is needed for photosynthesis to allow the coral to stay alive.

3b) There are many factors that produce variations in reef size. The most important factors are probably the reef type and the reef structure. For example, a more resistant reef will be eroded more easily and a more quickly e.g.
Chain found at Wilworth Cave, Dorset, than a cliff that is made up of a very resistant rock type e.g. Portland stone. The less resistant cliff unit may be further back on the coastline & is more susceptible to weathering by wave action, such as caves, stacks & stacks.

The rock structure will have an effect on the profile of a cliff. For example, a cliff profile with more joints & bedding planes will be more easily eroded & will be more unstable & susceptible to wave erosion, e.g. hydraulic action, abrasion.

More joints & bedding planes - less resistant to high energy waves & found as coastal caves.

Whereas a structure which has less bedding planes & joints will have a stronger more stable cliff profile. It will be more resistant against high energy waves & forms g. m. eroding.
less bedding planes & joints - more resistant e.g. limestone core.

The energy of the wave & consequent water also affects the cliff profile. If a cliff is being exposed to higher energy waves then it is more likely to be eroded faster & hence a more stable profile. It may also result in a wave cut platform being formed, where the bottom of the cliff is being eroded by the high energy in the waves.

Whereas a lower energy wave was hitting the rock it would be affected as much because it could withstand that energy.
Examiner comment – grade C

(a) Uses the photograph to identify a fringing reef close to the shore in shallow water. The conditions for coral growth are described with some limited explanation. Quite a good response.

(b) Although an attempt is made to illustrate cliff profiles with diagrams all the profiles possess the same shape. They are only weakly explained in terms of either rock type and structure or in terms of marine and sub-aerial processes.

Mark awarded = 15 out of 25
3(a) The coral reefs shown in the photograph are quite close to the island that it surrounds. Although the coral reefs are a bit of a distance from the land and not physically attached to it, the reefs aren’t connected to each other and appear to be quite spread out. So wave on.

Coral are very fragile organisms that will only survive under certain conditions. From the photograph, the climate appears sunny and thus must be warm. Coral each require relatively warm temperatures to survive. They require temperatures of about 24°C and anything below that will be detrimental to them. In addition to the warm sea temperatures, they require the presence of sunlight. This is because the corals feed on zooplankton which require the sunlight to photosynthesize. As such, the sunlight is necessary so that the coral can feed.

In addition, the coral will only survive in shallow water. This is because at deeper depths, there is insufficient sunlight for the zooplankton. Therefore, they may starve. The deeper waters may also have cooler temperatures which is harmful to the coral reefs. Coral reefs are vital. Most importantly, coral reefs will only survive in sea water. The sea water contains calcium carbonate which the
Coral uses to form its exo-skeleton. Without the saline waters, the coral will not survive.

However, some coral reefs may be found at deeper depths below 50m. This is because at one point in time the coral grew, but the sea level has risen over the years. As such, the coral may have died and hardened but still continued to grow as it adapted to changes in the sea level.

(b) Cliffs are exposed physical features. As such, they are subject to various natural activities which will affect the profile of it. There are processes of weathering, erosion or wave action that can alter the shape of the cliff. This, however, depends on the geology and the layout of the rocks.

To illustrate how sub-aerial processes can produce variations in cliff profiles, I will use a diagram showing alternating bands of hard (resistant) and soft (weak) rock.

![Diagram of cliff profile showing hard and soft rock layers.](image)

The hard and soft rock are alternating diagonally in a...
Examiner comment – grade E

(a) Very little use was made of the photograph, earning little credit. A partial range of conditions required for coral growth are given but without any explanation.

(b) The answer does identify the importance of rock type and structure in the production of cliffed coasts and does describe the operation of subaerial and marine processes. The weakness of the answer lies in the failure to apply this in any significant way to different cliff profiles.

Mark awarded = 11 out of 25
Question 4

Coastal environments

Only one question may be answered from this topic.

4 (a) Explain how different types of wave are generated and describe their effects on beaches. [10]

(b) Describe and assess the success of attempts to manage sustainably a stretch or stretches of coastline. [15]

Mark scheme

(a) Explain how different types of wave are generated and describe their effects on beaches. [10]

Waves are generated by friction between wind and water and hence are dependent on fetch, duration of wind and water depth. This produces an orbital movement of water inducing a wave. The waves can be of various types, amplitudes and wavelengths. Swell, storm, breaking waves, etc. although most will concentrate on the type at the coast – destructive or constructive. These help create the beach profile with the constructive waves pushing material up the beach and hence steepening the profile, whilst destructive waves comb material down the beach, lessening the beach profile.

(b) Describe and assess the success of attempts to manage sustainably a stretch or stretches of coastline. [15]

This is an opportunity for a case study or a set of examples discussing attempts at coastal management. This could encompass far more than mere coastal protection and may well involve managed retreat and the destruction of coastal protection to allow the re-establishment of salt marshes as in Essex. Inevitably many will see this as an opportunity to develop examples of protection from coastal retreat, but this should involve actual examples and include some assessment of the level of success. Probably few will approach sustainability in depth.

Level 3
Well chosen case study or examples that embrace management rather than just protection schemes. There is assessment of success (or failure) and of sustainability. (12–15)

Level 2
Examples or case study described with some accuracy and some attempt to see the scheme(s), rather than the management in terms of cost and benefit. (7–11)

Level 1
Random examples of coastal protection methods (groynes, gabions, sea walls, etc.) with little specific location or assessment. (0–6)
Example candidate response – grade A

Geographers have explained the marked effects that different types of waves can have upon beach shapes. The factors involved in generating different types of waves is important in understanding their effect upon beach profiles.

Where there is a long fetch (the distance of water that wind has blown over is large), greater wind velocity, and a greater depth of water, constructive waves are likely to be generated.

As the transfer of energy of transverse from wind to these waves is less, they are likely to have a greater wave length, lower wave height, and lower wave frequency. Waves are known to be formed from "swell" and usually approach beaches with a more gentle gradient.

As a result, their energy is dissipated across the beach in the form of a swash (foaming water that runs up the beach) and the returning backwash has a negligible amount of energy. The energy of the swash causes material to be moved up the beach, increasing the beach gradient over time; material is deposited above the low water mark to form a berm, and successive bides may form ridges and runnels on the beach.
In the diagram, the straight line marks the original beach profile, while the more irregular line shows the increasing gradient and the development of the berm.

In stark contrast to constructive waves, waves that are formed locally (from "sea") where there is a shorter depth, but shallower water and where there is greater wind velocity (such as during a local storm) are known as destructive waves. These waves have higher energy, a greater height, and steeper, longer wavelength and higher frequency. As they are likely to approach beaches with a steeper gradient, their energy is concentrated upon a small area, and the backwash returning down the beach contains most of the wave's energy. This powerful backwash carries material down the beach, decreasing the gradient over time and leading to the construction of longshore or breakwater bars, a depositional feature below the lower water mark. However, destructive waves are capable over hauling large amounts of material up the beach during the swash, and a storm beach may be created above the high water mark.

Original Beach Profile

Write on both sides of the paper

Longshore Bar

Beach
The diagram shows the decreasing beach gradient and the longshore bar and storm beach, in contrast to the original beach profile eroded by the storm beach. When compared to the profile of the beach formed by constructive waves, it may be seen that different waves can affect beaches in distinctly different ways.

b) In 2002, it was estimated by the UN that over half the world’s population lived less than 60 kilometres away from a coastline. The increasing interaction between humans and coasts, which are extremely vulnerable to human intervention, have led to people and governments imposing coastal management systems upon coastal areas. Rising sea levels and a lack of funds make it increasingly difficult to sustainably manage coastlines.

The East Sussex coastline that is inhabited by many people is susceptible to cliff and beach erosion. Throughout the 20th century, the government has been putting in an effort to sustainably manage the coastline. While most of the coastline is made up of a cliff face that directly faces the sea (such as in the coastal resort town of Hastings and the smaller coastal village, Fairlight), the cliff face has retreated in some areas, exposing beaches and the seafront property.
The building of groynes and a harbour at Hastings successfully prevented erosion of its beaches, but also acted as a sediment trap, making the waves approaching Fairlight more erosive in nature (as they carried less material). Rapid undercutting of the cliff at Fairlight resulted in homes being evacuated in 1989. The government constructed an artificial reef at Fairlight in 1992 to make waves break further from the shore, and thus protect the cliff from erosion. While this was a success, the reef did not dissipate wave energy and instead trapped sediment, leading to excessive erosion further east at the Pett Level marsh.

Being a salt marsh, Pett Level is extremely vulnerable to flooding. The government has built an embankment to protect it and also engages in beach nourishment. However, the
Examiner comment – grade A

(a) Although the answer is limited to constructive and destructive waves, their generation is accurately described. There is a very comprehensive and accurate explanation of the impact of such waves upon the development of beach profiles.

(b) The East Sussex coastline is effectively employed to demonstrate the problems of sustainable management of this stretch of coast and some attempted solutions are assessed. The coastal landforms characterising this coast are described and the strategies used for their protection are assessed in terms of their sustainability.

Mark awarded = 23 out of 25
Waves maybe, mainly of two kinds namelydestructive and constructive. Waves are generated due to the prevailing wind on the surface of the water.

Destructive waves are generally low energy, as they have a smaller fetch distance and are associated with a small wave length. But destructive waves hit the shore more often than constructive waves. Constructive waves hit the shore with an immense amount of force and although they have a relatively smaller swell, the breakwash is greater and this may wear away the beach profile but lead to the formation of a high beach at the low water mark due to the accumulation of beach material worn away from the foredune.

Diagrams show correct directions.

Destructive waves

Constructive waves
Construcive waves on the other hand are associated with a long fetch and are influenced by large wind currents, such as the trade winds. They therefore have a large wave length and although are not frequent, perhaps only 8-12/min, have a large breaking and of energy which builds up the beach by pushing material eroded from elsewhere up the beach, increasing its profile. Constructive waves are therefore associated with a higher beach profile. The fetch is generally low and so the waves gradually “spill” onto the shoreline. Little material is eroded, hence beaches formed are of a smaller size height than those formed by destructive waves.

Hence, constructive waves build up the beach and make them steeper through erosion, as well as increase the beach’s height so that waves break further offshore. On the other hand, destructive waves wear away the beach through wave and hydrodynamic action.
People may choose to protect a coastline from erosion by protecting it with hard defenses. Hard defenses may include breakwaters, which encourage deposition on the coastline and thereby protect the coastline from erosion. Breakwaters are low artificial structures built out into the sea and often have steps or groins that allow wave energy to dissipate and therefore keep from eroding the coastline. In many states, including Texas and North Carolina, concrete sea walls were built 10-30m in height in order to protect the coastline.

On the other hand, in places such as the Danish Wadden Sea, soft defenses like the dumping of rock material and sand were used on the coastline along with the more sustainable seawalls made of too loose rock that were also used. Soft-to-hard capping was another way to reduce the effect of the eroding waves and was a barrier for many to plants and animals and homes.
Examiner comment – grade C

(a) Constructive and destructive waves are described with some indication of their impact upon beaches. The account lacks any reference to wave generation.

(b) A rather generic account that deals with general means employed for coastal protection. These are not assessed as to their sustainability and the problems of coastal management are not developed. The answer could have been improved by the use of either a case study or of exemplification.

Mark awarded = 13 out of 25
4. a) In waves, there are two types: constructive and destructive.

For constructive waves, this occurs when swash is greater than backwash. Because swash is bigger, it deposits more materials up the beach, it is called a depositional wave. In swash, there are about 6 to 8 waves per minute at low energy and a low gradient beach profile. (see diagram)
Because of low energy, beach's materials do not get eroded away very much. To add, constructive waves consist of long wave length and low wave height which contributes to low energy on waves, thus making it constructive.

In destructive waves, backwash is greater than swash which leads to more amount of materials gets eroded away from the beach. Thus, it is called an erosional wave. In destructive, there is short wave length and high wave height which contributes to greater energy for the waves. To add, because beaches are in high gradient, it is easier for the backwash to flow outwards from the beach carrying with them the materials such as sands and shingles, therefore making backwash to be greater than swash.

Due to successive incoming waves, 'berms' can be formed as more and more materials are transported up the beach and goes up the beach.
b) In East Riding coastline, UK, there is two legislation from the government: 1991 Land Drainage Act and 1949 Coast Protection Act. These were made to prevent encroachment of waves and protect the land from flooding.

In 1996, Environmental Agency took over the responsibility of looking after the coastline. Because it didn’t have enough finance, it was financially aided by DEFRA (Department of Food and Rural Affairs).

There are what they have done:
First, approximately 9.2 km of frontage of coastal was protected by hard engineering works such as sea walls and rock armour structures. Other hard engineering works were adopted as well such as groynes to intercept longshore drift, offshore structures to break the wave energy offshore, revetments to prevent subsidence and finally, sea walls to prevent over-topping and flooding. Environmental Agency also adopted soft engineering as well such as flood banks to prevent flooding and sand dunes.

Second, they annually maintained all the things that had problems and monthly monitored whether the works were functioning properly. Not only their made ones, but Environmental Agency (EA) also checked privately invested ones to ensure that stretch of coastlines were managed. They also recorded down all the faults that occurred so that they know what to do when new ideas with new functioning works were to be produced.
Examiner comment – grade E

(a) There is no account of wave generation and that of constructive and destructive waves is very outline in nature. The impact upon beaches is limited to the addition or removal of sediment.

(b) A case study is given of the East Riding coast with a rather imprecise description of coastal protection through the employment of hard and soft engineering methods. The effects of such methods were only partially described and there was little attempt to make any assessment of their success or sustainability.

Mark awarded = 11 out of 25
Question 5

Hazardous environments

Only one question may be answered from this topic.

5 Fig. 2 shows the distribution of areas affected by hurricane (tropical storm) activity.

(a) Describe and explain the distribution of areas at risk of hurricanes. [10]

(b) To what extent is it possible to manage the hazards posed by hurricanes? [15]

Fig. 2 for Question 5

Distribution of areas affected by hurricanes (tropical storms)
Mark scheme

(a) Describe and explain the distribution of areas at risk of hurricanes. [10]

Hurricanes are generally found in tropical and sub-tropical areas, mainly on the eastern side of continents. Not found within 5 degrees N & S of the equator due to coriolis effect. Highest frequencies occur off East Asia, the Caribbean and the Indian Oceans, plus eastern Pacific N of equator. Explanation should be in terms of the high sea temperatures generated in these areas supplying sufficient latent heat for the development of these large intense low pressure areas. Movement is predominantly east to west making low lying eastern coasts the most vulnerable.

(b) To what extent is it possible to manage the hazards posed by hurricanes? [15]

The main hazards include high wind speeds, high tides, storm surges and flooding – these are summarised in the Saffir-Simpson scale and how they vary with different categories of hurricane strength.

There are a number of ways in which this could be tackled e.g. how individuals could respond pre-hurricane, during the hurricane and after the hurricane. Alternatively, it could be seen as what a government or planning authority might do. For example,

Government and disaster agencies are likely to be involved in monitoring the hurricane and predicting where it is likely to make landfall so as to provide warnings. On a longer-term basis they are likely to be involved in land use planning. This is designed to control land use so that the least critical facilities are placed in most vulnerable areas. Policies regarding future development may regulate land use and enforce building codes for areas vulnerable to the effects of tropical cyclones.

A master plan for flood plain management should be developed to protect critical assets from flash, riverine and coastal flooding.

Reducing Vulnerability of Structures and Infrastructures

- New buildings should be designed to be wind and water resistant. Design standards are usually contained in Building codes.
- Communication and utility lines should be located away from the coastal area or installed underground.
- Improvement of building sites by raising the ground level to protect against flood and storm surges.
- Protective river embankments, levées and coastal dikes should be regularly inspected for breaches and opportunities taken to plant mangroves to reduce breaking wave energy.
- Improved vegetation cover. This helps to reduce the impact of soil erosion and landslides and facilitates the absorption of rainfall to reduce flooding.

Level 3
Balanced account of a range of ways of managing the risk of hurricanes. Likely to include short-term and long-term measures. May recognise the differences between the individual's methods and governments. Support likely to be present. \((12-15)\)

Level 2
A more generalised account of measures. Likely to be unbalanced with a greater focus on either individual or government role. Support less convincing. Description likely to be stronger than explanation. \((7-11)\)

Level 3
Basic descriptive account lacking in detail or support. Partial account. Unbalanced. Descriptive. \((0-6)\)
Those areas at risk of hurricanes are typically found between 5°-30° north and south of the Equator, as shown in Fig. 2. The main reason for this is hurricanes are fueled by the release of latent heat energy from evaporation, and in order for this to occur, sea temperatures at the surface must be above 26°C, otherwise evaporation cannot take place. This is the reason that hurricanes are only rarely found further than 5°-30° N/S of the Equator – because sea surface temperatures are too low either to lead to the formation of a hurricane, or to sustain one for a significant period of time. If one does travel that far, sea surface temperatures become cooler away from the Equator because the sun’s rays become less concentrated and more diffuse, and so less solar radiation is absorbed.

The reason then, that the diagram shows no areas on the Equator to be affected by hurricanes, is due to the Coriolis force. The curvature of the Earth means that it has no effect at the Equator, and so there are few atmospheric disturbances – an necessary prerequisite for hurricane formation, to give the winds the energy for circulation around the central eye. The diagram also shows that the average hurricane travels west from its point of origin – this is because of the impact of the NE trade winds that occur around the sub-tropical high, where hurricanes typically form – this westerly movement means that
areas such as the west coasts of both Africa and South America are shown to be unaffected by hurricanes. Of course, those areas that are most at risk are coastal regions, such as those bordering the Gulf of Mexico (which typically experience more than three per year) why this is because hurricanes cannot penetrate very far inland as they lose their supply of moisture

8/10

5(b) There are a number of hazards posed by hurricanes, and various attempts to manage them have met with different levels of success. LEDCs, due to their relative economic and social disadvantages, are usually affected more than MEDCs because management is met with a number of problems. In India, the 1990s were a particularly bad decade for tropical storms, and one of the most devastating was Chisa O7B in 1996 taking over 20,000 lives and leaving millions homeless. Since that event, the Indian government has tried to find strategies for coping. Rural infrastructure is very limited, and only 30% of villages have a suitable evacuation route. By comparison, Hurricane Andrew, which hit the US state of Florida in 1991, caused billions of pounds in damage, but took just nine lives because the evacuation program had been so successful. The difference there was down to a matter of prediction - the USA has a large amount of
capital, and has spent money on building weather stations that can issue advance warnings 8 9 of more than two days. Since Andrew, the US government has increased its funding of hurricane prediction, and has also helped to set up education in preparedness for those coastal regions most at risk.

However, while evacuation can help to save human life in MEDCs, property damage is a big problem. The main risk comes from flooding - storm surges combined with heavy rainfall can reach up to 2 km inland, and it isn't viable to restrict coastal development to that extent.

The Indian government has introduced a number of building schemes for concrete shelters with raised foundations - these buildings may be structurally safer, but rural populations in LEDCs are often wary of top-down government-controlled solutions, and this also poses a problem in terms of educating people about hurricanes.

Prediction in LEDCs is often very unreliable or non-existent, and in coastal India, only 20% of the poor fishing population have a radio, so it is very difficult to alert people in times of danger. The low pressure associated with hurricanes can cause smalls # a rise of 1cm per mb lower - which can cause serious flooding on a localised scale.

In the Caribbean, following the devastation of Hurricane Mitch, regulations have been introduced in try to limit the risk. Deforestation had contributed
Examiner comment – grade A

(a) A good understanding of the distribution of hurricanes that makes full use of the figure provided. The explanation of hurricane formation is adequate but does not discuss the vital role of latent heat.

(b) A good discussion of the different types of hazard that are consequent upon the passage of a hurricane. It employs effective examples. Some assessment is made of the types of response that have taken place.

Mark awarded = 20 out of 25
Example candidate response – grade C

Hurricanes form on the west side of oceans due to the Coriolis force (the wind direction curving due to the earth's orbital motion). The formation is between 5° and 15° north and south of the equator, due to the fact that the Coriolis force doesn't come into effect in the first 5°, and generally this is where the sea is warmest, which leads on to the next point, that is, they have to form over a body of water. Because the air becomes saturated, it is warmed by the sea and therefore rises (in an anti-clockwise direction), causing it to become unstable. It has to maintain this warmth and moisture content to be effective in destruction.

Areas most at risk from hurricanes are therefore low-lying, coastal areas. As the hurricane sucks air up, it causes storm surges (relative sea level rise), meaning that coastal areas are most at risk when this occurs at the same time as spring or high tides. Therefore one would suggest that MEDCs would be more protected than LEDCs because they can afford to build expensive sea defences, such as levées. It is generally said that densely populated areas are also in the top band of risk (obviously those that are near the coast), due to the fact there are increased chances of informal, unstable housing. For the reasons above, Bangladesh is one of the most vulnerable places for hurricane damage in the world.
There are several factors determining the extent to which it is possible to effectively manage hazards posed by hurricanes. It can extend if it depends on the altitude take, whether you have a deterministic view, which means that nature/environment is in control, or whether you share a adaptation/dominance view, supporting the fact it is possible to mitigate against hazards.

Some think that the hurricane damage can directly be linked to the economic wealth of the country involved. This is true considering MEDCs, such as America, can build levees to deal with the sea level rise, and build life-saving buildings that can withstand high winds. As well as having aid available to repair and well-trained emergency services. All of which could be said that LDCs don’t have up to standard (maybe due to other economic priorities). However this was not the case when Hurricane Katrina hit New Orleans on the 29th August 2005. Storm surges breached the levees, comfortably and funnelled up the canals in the inner city, causing widespread flooding. 1,800 people died, and thousands were made homeless. Survivors rushed to the Super Dome Stadium, which was one of the few areas higher, so it hadn’t been flooded. America is an extremely wealthy country, but yet response was slow. There was a lack of food and water which lead to violence and looting. Illness spread and there were no doctors to treat it. The health service worked on insurance, which many people had, considering 1% of the people were under the poverty line. Many blame the government for organised prejudice as it was claimed they thought New Orleans was of lesser economic value. Of course the hazards.
Examiner comment – grade C

(a) Deals with the general conditions required for the formation of hurricanes but does not relate these to the distribution shown on the figure provided which is largely ignored.

(b) Hurricane Katrina is used as an example to illustrate the impact of a hurricane but there is little attempt to address the problems of hazard management. The account is largely of the effects of the passage of Katrina.

Mark awarded = 14 out of 25
Example candidate response – grade E

(a) The distribution of hurricanes are relatively spread out across the earth with tropical storms being formed across central America, Australia as well as in South-East Asia. Although widely distributed, tropical storms are found at the tropics, both north and south of the equator. This is because, tropical air is humid and unstable in nature, which are the main characteristics required in terms of atmospheric disturbances, for hurricanes to develop. The location of all tropical storms being found over tropical waters is crucial to their development as tropical sea waters ranging from 26°C - 29°C are required as the rising moisture from the sea water contributes to their development in terms of providing the moisture needed to supply energy to the storm through the latent release of latent heat, through convection.

(b) Hurricanes (tropical storms) are formed at the inter-tropical convergence zone (ITCZ) within the tropics, the region of where the majority of atmospheric disturbances are found. Certain climatic conditions are necessary for the formation of a tropical storm such as high levels of moisture, low pressure and warm
Sea Waters. For example, tropical storms forming off the west coast of Africa will make use of the southern Atlantic Ocean in terms of a source to provide the moisture, through evaporation, to drive the storm.

The hazards posed by hurricanes consist of heavy rainfall, storm surges and strong winds.

Heavy rainfall is a hurricane hazard that poses secondary hazards which include the potential of flooding and landslides. In order to manage the rainfall hazard, hard-resistant design can be used in low-lying hazardous areas in order to prevent flooding. For example, during Hurricane Katrina in 2005, the city of New Orleans was safe-guarded by flood barrier walls. These barriers were used to control the areas of flooding by preventing water from flowing inland, thus minimising the potential direct hazards such as injury or property damage. This method of management is generally successful in most circumstances, however a significant build-up of water behind these barrier walls may result in the structure collapsing due to the increased pressure from the accumulation of water.

In terms of dealing with storm surges, specified development plans for land-use can be implemented so that no housing or other constructions are developed in storm surge prone areas. For example, in
Examiner comment – grade E

(a) Little use is made of Fig. 2 with only the vaguest of descriptions of the distribution shown (e.g. ‘the tropics’). There is a limited appreciation of the general conditions required for hurricane formation.

(b) Hazards associated with hurricanes are described in a generalised and rather unspecific manner. Attempts to limit the impact of these hazards are described only in terms of engineering methods. No account is given of the success of these methods, nor is there any discussion of attempts at hazard management.

Mark awarded = 11 out of 25
Question 5

Hazardous environments

Only one question may be answered from this topic.

5 Fig. 3 shows the location and magnitude of earthquakes in one week in June 2010.

 (a) Use Fig. 3 to describe the world distribution of earthquakes in June 2010. Explain how an earthquake may have been generated at one of the areas shown. [10]

 (b) Describe the types of hazard created by volcanic eruptions. What measures can be taken to reduce the hazardous effects of volcanic eruptions and how effective are they? [15]

Fig. 3 for Question 5

Location and magnitude of earthquakes

Key

magnitudes □ > 7 □ > 5 □ > 2.5
Mark scheme

(a) Fig. 3 shows the location and magnitude of earthquakes in one week in June 2010.

Use Fig. 3 to describe the world distribution of earthquakes in June 2010. Explain how an earthquake may have been generated at one of the areas shown. [10]

Distribution: principally the Pacific ring of fire, a line through the Caribbean, one along the eastern Indian Ocean and a few scattered others. Explanation of one occurrence: probably the San Andreas (credit accurate detail) or the more usual convergent plates with subduction, as along the west coast of South America. Allow divergent plates from any located in mid-oceans even though they may not be diverging in practice.

(b) Describe the types of hazard created by volcanic eruptions. What measures can be taken to reduce the impact of such hazards and how effective are they? [15]

Types of hazard: balance quantity against accuracy of description. Expect three types for full credit from pyroclastic flow (nuées ardentes), lava flows, mudflows, pyroclastic and ash fall out, gas clouds. Also allow effect on local weather and world climate.

Measures to reduce impact and effectiveness: prediction with evacuation, diverting / bombing lava flows, building construction plus the list of ‘education, first aid support, infrastructure with effectiveness linked to LEDCs v MEDCs, and so on.

Level 3
Well balanced answers with relevant detail backed up with examples. An understanding of the degree of hazard posed by different types of eruption and their products. Precision and detail in the measures taken to reduce the impacts with their effectiveness well addressed. (12–15)

Level 2
Coverage of the demands of the question but lacking accurate detail in some areas and limited use of examples. Description of types of hazard more likely to be well answered than measures to reduce their effects. (7–11)

Level 1
Weak detail/precision in describing the hazardous effects of types of eruption and coverage limited. Inappropriate, or lack of, examples. Lacking accurate detail of measures to reduce the impact of the hazards and very limited or no evaluation of their effectiveness. (0–6)
Example candidate response – grade A

5. a) In June 2010, as expected, earthquakes generally occur around the Pacific Ring of Fire where continental plates and oceanic plates meet and subduction of the oceanic plate occurs. The earthquakes tend to occur in clusters on the South of Alaska, the West coast of the US, around Indonesia, to the right of Australia. This indicates that earthquake activity occurs at the plate boundaries where pressure is currently released.

An earthquake occurs, such as at the West coast of South America, around Indonesia and Japan, through release of pressure at subduction zones. Oceanic plates meet continental plates at destructive plate boundaries. Oceanic plates are heavier and sink subducts under the continental plate. Pressure is generated and stored in this subduction zone when the downward movement of the oceanic plate becomes stuck, causing a build up and accumulation of kinetic energy. When plate movement occurs again, part of that energy is released in the form of earthquakes, the oceanic plate becoming unstuck and a thrusting, pushing movement of the plate can occur, creating an earthquake which travels in waves from the subduction zone.
5. b) Volcanic eruptions create many types of hazards.

Pyroclastic flow is one of the main causes of destruction, and flows down the slope of the volcano at high temperature and speed. This flow of rock material, ashes and gases are deadly to life and can also destroy agricultural land and settlements. When mixed with rainwater such as from a typhoon in Mt. Pinatubo case in 1991, pyroclastic flow can turn into a lahar which can engulf a town in high temperature muddy materials.

Lava flow is slow and can be outrun by humans generally, but their high temperature causes buildings to catch fire and burn, become destroyed. Because the flow is at such high temperature little can be done to save immobile assets such as houses from being destroyed by lava flows. A good example of this is the lava flows of the volcanoes of the Hawaiian Islands where lava viscosity is high therefore flow rate is low, not a threat to human life, but immobile properties cannot be saved.

When lava flows into the sea it also turns into pillow lava. This is of no significant threat to humans as pillow lava will travel under water and hardly comes into contact with humans.
Asthma clouds and plumes, as well as rock material released into the air, can be very hazardous. Lava bombs and rocks can land on people or properties and kill or damage extensively. Ash clouds that ash when breathed in also injure the respiratory system and cause death. Ash clouds and volcanic materials released into the air gases can also disrupt weather patterns and alter global temperature, such as Mt. Pinatubo's eruption in 1991 which caused crops in the area around the Philippines to fail, and global temperature affected by gases released.

Little can be done in terms of actually reducing the hazard of volcanic eruptions. The scale of size and temperature of erupted materials is beyond what scientific tools can effectively minimize. However, since volcanoes give early warning signs in the form of tremors, small eruptions, and release of sulfur gases, hazardous damage to life and resources can be reduced by effective evacuation plans. This is effectively implemented in volcano-prone cities of Japan, where evacuation and early warning systems have to be put in place to reduce damage to lives and assets. Still, there are always things left behind that cannot be saved, such as houses and other immobile assets, which cannot withstand volcanic eruptions.
Examiner comment – grade A

(a) A limited description of the distribution of earthquakes shown on Fig.3, but one that does attempt to organise the groupings of earthquakes into a pattern that fits with associated plate boundaries. Earthquakes consequent upon subduction are briefly explained.

(b) A good coverage of the types of hazardous materials that result from volcanic eruptions. Types of response to these hazards are discussed in the context of the importance of prediction and evacuation with good assessment of the limitations imposed upon human attempts at limiting the hazardous impacts.

Mark awarded = 19 out of 25
Fig 3 shows that recent earthquakes of June 2010 seem to be concentrated in clusters of activity along the edges of continents or continental plate boundaries. Smaller magnitude earthquakes of 2.5 or more are the most common, particularly in the areas of the Caribbean islands, the west coast of the United States, the Alaskan Islands and the Philippine and South-East Asian islands. Anomalies to this general correlation include the two earthquakes in central China that do not seem to be along any known major fault line as well as a minor earthquake in Turkey of less than magnitude 2.5 or over. The largest earthquake of magnitude 7.5 or more has occurred in the South Pacific Ocean north of New Zealand. The smaller surrounding earthquake readings are likely to be aftershocks of this large earthquake. An earthquake may have generated at one of the areas shown in any of three ways owing to the different types of plate margins in the world. At a conservative plate margin such as the San Andreas Fault where two plates slide laterally past each other, tension builds up due to friction between the two moving plates. The release of this tension causes an earthquake. On a constructive margin, fewer, powerful earthquakes occur as there is less friction than other margins because the plates are moving away from each other. Destructive margins create the most powerful and violent earthquakes as they generate the most tension because one plate is being forced under another plate. This process is called subduction and it creates and releases large amounts of tension creating earthquakes. An example of a fault destructive margin is the Pacific and South American plate.
b) Volcanic eruptions create many hazards such as mudflows, pyroclastic flows and lava flows as well as emitting vast quantities of poisonous gas such as carbon monoxide and sulphur dioxide. On May 18, 1980, Mt. St. Helens erupted violently causing mudflows and pyroclastic flows. The pyroclastic flows extended 8 kilometres north travelling at 80 kilometres per hour and killing 57 people. Hazards caused by the mudflows included the eroding of lakes and rivers. The Columbia river depth was reduced by 8 metres causing 31 ships to be stranded. 24 kilometres of railway and almost 300 kilometres of road was destroyed by the mudflows. Pyroclastic flows destroyed over 200 homes.

However, Mt. St. Helens was a predicted eruption and although the northern point blast was not anticipated, many precautions were taken to reduce the eruptions hazardous effects. By May 18 all residents within a 5 mile radius were evacuated and logging work stopped. Train services and vehicles were not permitted into the area and so human casualties were minimized. The cause of the 57 deaths was due to people ignoring warnings as well as the fact that the northward blast breached its estimated range and destroyed houses roughly 8 kilometres directly north of the volcano.

As for property, there is little that can be done to preserve buildings and trees from a volcano blast zone and as a result, 9.4 million cubic metres of lumber was destroyed by the volcano blast.

Studies show that the northern blast of Mt. St. Helens could have been predicted due to the significantly visible bulge that was growing on the north side of the volcano prior to the eruption as well as the lesser known history of Mt. St. Helens' tendency to erupt laterally north instead of vertically. This means that although few lives were lost comparatively owing to the size of the eruption, few lives could have been saved had scientists predicted the nature and direction of the eruption. So, prediction and evacuation are the main methods of reducing the hazardous effects of volcanoes and if accurately predicted, they can greatly reduce the death toll of a volcanic event. However, for there is little that can be done to reduce the hazardous impact of volcanic eruptions on property such as houses and trees as has been seen in the case of Mt. St. Helens.
Examiner comment – grade C

(a) A good opening account of the distribution of earthquakes, that makes effective use of Fig. 3. The generation of earthquakes is simplistic and less well accomplished.

(b) The answer concentrates upon the eruption of Mt St Helens, but unfortunately does not adapt this case study to the demands of the question. Thus the types of hazardous materials are not detailed nor are the efforts to reduce their hazardous effects. This illustrates the importance of applying case studies to the demands of the question.

Mark awarded = 14 out of 25

Example candidate response – grade E

Fig 3 shows a spread distribution of the earthquakes happening in June 2010. We can appreciate that those of higher magnitudes were registered in the centre of the map. There are some places where earthquakes seem to be frequent but not so severe, such as the north west of North America and mid-west of it. In Europe most of the earthquakes are concentrated in the south part of the continent and there are fewer than in the rest of the world. It is important to mention that there is an absence of earthquakes in the South Pole and Australia, Arabia and north of Europe. An earthquake happened in, for example, the Philippines might have its exploration on the sliding of the Euro-Asian plate moving towards the Philippines plate and forming at the point where they meet a sudden release of energy resulting in a not very severe earthquake due to the one of constructive margin. We find this place another possibility is the release of pressure as a result of the Euro-Asian plate sliding on top of the Philippines plate.

There are different types of hazards resulting from a volcanic eruption. Eruption of vast amounts of ash and smoke into the atmosphere is probably one of the most worrying ones as its effects can be devastating. For example, in Mt Pinatubo's eruption, there was a layer of ash after the eruption of 50 cm thick in places surrounding the volcano and up to 20 cm thick in places even in a radius of 10 km. As a result, lots of buildings collapsed, cars broke, and fields were harvested. The second hazard is related to ash also, as sometimes the weak that the volcanoes produce when they erupt, produces torrential rains that make the ash contaminated in the air fall in form of thick mud drops that also contribute to the damage produced in lands (crops destroyed and cattle, body injured/affected), roads (as they can't...
A third hazard resulting from this one is the mudflows when all this mud has fallen to the soil, flows of mud sweep away every single thing they encounter in its way. As a consequence, houses are swept away (as well as cattle), people drown or suffocate, and the instability created could even cause mass movements in mountains.

A different type of mudflow called lahars can also take place after a volcanic eruption happens. All the ash deposited in land can be swept away after heavy precipitation takes place. In difference with the mudflows, lahars take place when all the ash has been deposited on the land and then there's been rain, but it is not formed as the precipitation flows, mixing itself in the way with the ash.

Lots of different measures have been taken and have been thought to be taking. However, not all of them are effective as the magnitude of a volcanic eruption as well as the exact moment in which it takes place are very difficult to determine.

Prediction can be the best way of reducing the effect of such a hazardous event and an important increase in life loss. Use of seismographs to detect earthquakes that could hint a new eruption are a way to protect a place from the effects. Studies on the regularity of these events will also be really helpful to prevent more serious effects. For example, in Italy, the effects of one of the most important and damaging eruptions could have been reduced dramatically if people hadn't had forgotten them even though the volcano had been inactive for almost a century; it didn’t mean that they should not monitor any anomalies in it.

Observing water levels, gas expulsion, and sometimes even animal behaviour can also anticipate the hazardous event. These are measures very important and effective, but they are predictive measures after all, so building houses away from the hedges of volcanoes, in education for population, and good plans evacuation could help definitely in reducing the effects.

Changes in climate (e.g., alod) could also be called hazard as the change dramatically after volcanic eruption. Climates might get warmer and drier and the land might become more fertile but also (tree) trees and vegetation would have to be re-planted and might take decades to reforest the damaged areas (deforestation).
Examiner comment – grade E

(a) A general description of earthquake distribution without any indication of scale or any indication of what might underpin the distribution. A very garbled account of earthquake generation.

(b) A disorganised descriptions of volcanic hazards that centre on volcanic ash and lahars. Pyroclastic flows and lava are not developed. Whilst the importance of prediction is recognised that means of achieving it or of the actions taken are not developed or explained.

Mark awarded = 11 out of 25

Question 8

8 (a) Describe how plants are adapted to drought conditions in hot deserts. [10]

(b) What are the main sources of water in hot deserts? How might these influence sustainable development in these areas? [15]

Mark scheme

8 (a) Describe how plants are adapted to drought conditions in hot deserts. [10]

To survive, desert plants have adapted to the extremes of heat and aridity by using both physical and behavioural mechanisms.

Xerophytes (adapted for aridity), such as cacti, usually have special means of storing and conserving water. They have few or no leaves, to reduce transpiration, shallow root systems, ability to store water in their stems, spines for shade and waxy skin. Phreatophytes grow extremely long roots, allowing them to acquire moisture at or near the water table. The creosote bush is one of the most successful of all desert species because it uses a combination of many adaptations. Instead of thorns, it relies for protection on a smell and taste which wildlife don’t like. It has tiny leaves that close their stomata (pores) during the day to avoid water loss and open them at night to absorb moisture.

Other desert plants, using behavioural adaptations, appear during seasons of greatest moisture and/or coolest temperatures. These are usually perennials, plants that live for several years, and annuals, plants that live for only a season. Perennials often survive by remaining dormant during dry periods of the year, then springing to life when water becomes available. Most annual desert plants germinate only after heavy seasonal rain, and complete their cycle in a matter of weeks.

Deserts are actually diverse environments and comprise of a multitude of micro-climates changing from year to year. Desert plants must respond quickly when heat, moisture and light levels are suitable.
(b) What are the main sources of water in hot deserts? How might these influence sustainable development in these areas? [15]

The seasons are generally warm throughout the year and very hot in the summer. The winters usually bring little rainfall. Rainfall is very low and/or concentrated in short bursts between long rainless periods and falls in the form of sudden, violent thunderstorms. Evaporation rates regularly exceed rainfall rates.

There may be several storms in a year, or none for several years: average rainfall is, therefore, deceptive. Deserts receive runoff from ephemeral, or short-lived, streams fed by rain and snow from adjacent highlands.

A few deserts are crossed by 'exotic' rivers (such as the Nile, the Colorado, and the Yellow Rivers) that derive their water from outside the desert. Such rivers infiltrate soils and evaporate large amounts of water on their journeys through the deserts.

Aquifers underlie many deserts with water passing through permeable strata from areas outside of the arid zone or they may contain water from when the current arid areas were much wetter. The limited amount of water from rainfall received by a desert is eventually either lost by evaporation, or percolates through loose sediments and permeable layers below the surface of the earth giving rise to groundwater. Deserts may also have underground springs, rivers, or reservoirs that lie close to the surface, or deep underground (oases).

Dew and fog may play an important role, especially where dew fall exceeds rainfall during periods of drought – e.g. Namib Desert.

Sustainability needs to be addressed in terms of water usage to sustain agriculture and life such that the use of water does not exceed the supply, though this may well be happening with ancient aquifers. Dams up stream of deserts may reduce flow of water (Colorado) and so make agriculture unsustainable. On the other hand the Aswan dam provides water to irrigate the desert. Some discussion of salinisation would be expected of good candidates.

Level 3
A good appreciation that desert water supply is not just reliant on infrequent rainfall, but that ephemeral streams, exotic rivers, aquifers and dew are important. Relates water availability to sustainable use without damaging supply or environmental degradation (salinisation etc.). (12–15)

Level 2
Will be an awareness that rain rarely falls in deserts and if it does, it usually falls in the form of sudden, violent thunderstorms. Some appreciation of other sources. Limited relationship between water supply and sustainability. (7–11)

Level 1
A simple account focusing on lack of water supply in hot deserts. Emphasis will be on lack of rainfall and a simple definition of deserts. Little, if any, idea of sustainability. (0–6)
5a) Plants are adapted to drought conditions in hot
deserts through a mix of ways. Arid desert areas
have extreme climates, are often very dry and the nature
of the soil makes it even more difficult for
plants to grow.

Soil in hot desert areas tend to be loose. They also
lack in biomass which shows that there are very
little nutrients in the soil. There are lack of organic
material as well. They have shallow rootlets which show
the thin top layer of the soil above the rock. They
have very low water levels which is not an
ideal condition for plants to grow. Uptake by capillary
action occur which causes all water condition. As a
result, some plants have not grown through the
right process but the soil colour and the natural
can show the parent material e.g. erosion and mechanical
weathering of resistant rocks.

Due to these reasons and the high temperature and
lack of water, plants have adapted to this condition.

Firstly, Euphorbia plants are ones which are adapted
through growing and actively hoping during the
episodic rainfall, storing water in extremely short
period of rain in hot deserts areas. This plant has
have a short life span. They germinate during the
rainfall and the germination needs will not
grow until the next rainfall.

Secondly, Atriplex plants which have developed to adapt drought conditions. These are
There are three types of xerophytes: succulents, and drought plant species. Succulents are plants that have adapted through their stems being clothed to reduce water transpiration from their leaves. Also they have a thick covering on their stems and leaves. An example of a succulent plant can be cacti. Cacti also have adapted by having thick leaves to store water to propagate. Photoautotrophs are plants which have adapted by having long root systems to reach into the ground for water. The roots will be long to reach and find the small amount of water available to them.

The final types of plants are halophytes. This are plants that have adapted to saline conditions. This is important as desert areas can quite often be very saline.

The adaptation of plants will also depend on the different desert or climate and factors affecting the rainfall and creating the climate will differ. The plants will have to adapt the extreme temperatures and lack of water to live close to the individual characteristics of deserts.
6) Water source in hot desert areas are extremely rare. Rainfall does not occur very often and it is not frequent. Irrigation rainfall are unpredictable and even unreliable in ensuring it as a sole source. Therefore, the few types of water source will be the few waterfalls, scenic and rivers. Furthermore, Nile river. Sustainably developing in these regions are extremely difficult and the water source available might not lead to their sustainable management in all cases.

Sustainably developing is especially important in scenic and rural regions to avoid further degradation of, desertification, and to keep the area from losing its beauty. There are many ways to see for sustainable management.

Firstly, water and sand dunes and cultivation is important. In many cases, water and cultivation is important. Proper cultivation and sand dunes will greatly improve the environment and may help to prevent further degradation. If there are done over exaggerating capacity, it will destroy the nature of the soil vegetation and will completely change the land. Also, it also will lead to more management of the water source for sustainable development. Also, different methods of growing crops can be introduced. Secondly, deficit irrigation can be one key factor for sustainable development. It is very important to plan and grow. However, the irrigation is tree might lead to increase in farming.
and interception which can build up if the rate falls, and even because of the vegetation expansion or the ground can be reduced.

Finally, education is important. Educating people on the use of water resources and growing crops, planting trees, and most importantly the impact it can bring if sustainable development does not occur.

Irrigation is very common here lead to sustainable development. Through more water being made available it has helped with sustainable development. Through ways of irrigation in Egypt they build the idea along the river Nile which helped them with sustainable development. It gives positive outcomes and contributed to sustainable development so with the increased in water supply more agriculture can be taken.

However, it being some irrigation does not contribute to sustainable development and the lack of water can. It can be difficult for this to occur. Irrigation is not only increasing water supply but this also if it affects the natural ecosystem and also can give a heavy impact on flora and fauna. Animals and plants will die due to the lack of water and in the short term it might be seen to be bringing with positive but it will be more likely to be a negative impact. Also because of lack of rainfall for harvesting rice through irrigation can not be
Examiner comment – grade A

(a) Plant adaptations in deserts are set within the context of both climatic aridity and soil conditions. The various types of plant adaptation are categorised into those consequent upon episodic rainfall (phreatophytic), aridity (xerophytic) and soil conditions (halophytic). The answer could have been improved with a little more explanation.
(b) Water sources are described very briefly and without elaboration. The main part of the answer concerns the sustainability of various generic types of arid area development such as grazing and irrigation. Whilst the limitations upon development of water supply are touched upon they are not developed and the answer could have been considerably improved by exemplification.

Mark awarded = 18 out of 25

Example candidate response – grade C
ground water. Tonic chemicals are used to kill competing plant roots to ensure that these drought resistant plants can meet their photosynthetic raw material requirement.

There is also a substantial reduction in the surface area of the plant to prevent the high rate of water loss due to high heat intensity.

The presence of fine leaf stomata also minimizes the loss of water and the presence of minute hair around stomata to reduce the diffusion gradient by maintaining humidity because vegetation is sparse in hot deserts and there is no barrier to winds which are dry, hot and tend to increase the rate of water loss from the plants.

(b) Sustainable development occurs when the needs of the present generation are met without sacrificing the needs of future generations.

In deserts the water table is a source of water, but it is not reliable since the volume of water is low. So, basically irrigation via diversion canals from rivers, dams are the source of water in hot deserts. For example, Egypt is a vast expanse of desert. The only way it gets its water is through the Nile river. The Aswan High Dam has been providing the water supply to Egypt. This was
allowed agricultural production to take place via diversion schemes. Where the land was previously
infertile it has been recovered by the use of water from the river. This allows sustainable development to take place.
On the other hand deserts such as the Gobi desert in Mongolia rely on the minimal amount of rainfall that takes
place. This is insufficient to meet the needs of the present generation. The Sahel have suffered due to this lack of water supply. In some lesser
countries such as Africa lack of reliable sources of water supply is a major cause for
removal of forest and desert. Sandy soil is poor in holding water and dry up quickly. The high
vaporisation rate prevents stormwater from the desert. Also, desert soil is poor in holding water.

Examiner comment – grade C

(a) A very disorganised account of plant adaptations that described xerophytic plants and others that were
not identified but appeared to refer to phreatic plants. There was little explanation of the adaptations.

(b) The answer described the lack of water that occurs in desert areas rather than the sources of water
that do occur. There was some limited attempt to assess how the lack of water might inhibit sustainable
development.

Mark awarded = 14 out of 25
Example candidate response – grade E

Under drought conditions, there are four five ways for plants to adapt to the condition.

First of all, plants in hot desert can use deep roots to extract water underground. These kinds of plants are called phreatophytes. Due to capillary action, water table in hot deserts usually is high, these plants can use deep roots to directly extract water from water table.

Moreover, plants in hot desert, their stems & leaves are adapted to reduce water loss. These leaves usually are needle shape in order to reduce water loss. These kinds of plants are called xerophytes. These plants usually have a thick wall which can reduce evaporation of water from the surface.

In fact, plants in hot desert have a water storage system in trunk such as cacti, baobab, and so on. When there is flash flood or they absorb underground water, they will store most of the water in the trunk. When they suffer serious drought, plants can use these storage. They are drought-resistant.
Furthermore, drought resistant plants can extend its growing period. It can dormant to stay at a location, when there is flash flood or it is near to the water table, it will bloom immediately and grow up, they will fully utilise moist in the air. After they spread new seeds, they will die. However, the next generation will can dormant a to stay near at a specific location and wait for next flash flood.

Finally, these kind of plants are salt-resistant. Due to strong evaporation in hot desert, there will be a salt crust on the surface. Some plants, however, have a filter in their organism. When they absorb water on the ground, they will filter these salt on the surface.
b) There are two main sources of water in hot desert. They are underground water and flash flood respectively. Due to capillary action, there will be a pressure on the soil which will result in high rise of water table. These underground water may come from thousands of kilometres from the mountain.

Sometimes, there will be flash flood in the hot desert. In hot deserts, flash flood usually comes from sudden rainfall at a particular region, they come fast but they also vanish immediately. Due to strong evaporation, they will soon disappear.

However, these two main sources of water provide water resources for shifting cultivation, tourist spots and factories in the hot desert. It can maintain a balance between economic, social development. High rise of water table sometimes will appear on the surface of hot desert. Due to abundant supply of water, there will be lots of
plantations at the spot. These are called "green islands." Farmers can practice shifting cultivation in these different places of green islands. In Sahel, farmers will practice shifting cultivation since there is already abundant nutrients of soil. After they practice in a place for a certain years, they will move to another green island. This is one of the sustainable development in Sahel. They will also practice grazing like donkeys, sheep and so on. It can protect local culture in the region.

Also, these green islands is one of the major tourist spots in Northern Africa. They provide a station or place for tourists to take rest and it can stimulate tourist development in Northern Africa like Nigeria, Egypt and so on. These islands also a kind of famous spots for tourists. It can promote eco-tourism eco-tours in the region and promote sustainable development. It can enhance awareness about environmental protection.
Examiner comment – grade E

(a) A competent description of some desert plant adaptations including xerophytic, phreatophytic and halophytic. Explanation is very limited and there is no exemplification.

(b) Two water sources are identified – floods and underground supplies. Neither are explained or developed. Water supplies are linked to the rather inappropriate examples of shifting agriculture, tourism and factories. Green island agriculture in the Sahel could have been developed but appears only as an afterthought and even here there is no indication of the problems of water supply.

Mark awarded = 10 out of 25
Question 8

8 (a) Outline the possible causes and consequences of desertification. [10]

There are many potential causes of desertification. Some are natural – such as long-term climate change and prolonged drought – but there are many that are human-related. These include the sedentarisation of nomads, increasing numbers of livestock for subsistence, deforestation for fuelwood and population growth, for example.

The consequences include reduced agricultural productivity, reduction of vegetation cover, soil erosion, soil compaction – in general the spread of desert-like conditions into areas which were previously productive. Candidates may develop consequences in human terms such as malnutrition and even migration.

(b) Using examples, assess the extent to which it is possible to manage an arid or semi-arid environment. [15]

There should be some indication as to how an arid or semi-arid environment can be managed in the long-term. An example could be the use of diguettes or earthen dams in the Sahel, the production of prickly pear in the Eastern Cape region of South Africa or mineral development in Botswana. The use of such areas for tourism and game reserves may provide a better return than farming. There may need to be some control through planning.

Level 3
Provide a suitable case study or case studies/examples that illustrate how it is possible to manage arid and semi-arid environments. They are likely to investigate some problems and potential solutions and deal with general management issues. (12–15)

Level 2
Example(s) selected may refer to mis-use of the environment rather than management. However, there could be some explanation of why the use proved poor. (7–11)

Level 3
A generic answer which does not deal with the management/cause-effect but merely considers human use of arid and semi-arid environments with little regard to the question. (0–6)
Desertification is a term that is defined as land degradation in semi-arid areas, causing them to lose the appearance and characteristics of arid environments. The main physical cause of desertification is global warming, which leads to a decrease in precipitation in many parts of the world. This means that the water balance in a particular area will become more of a moisture deficit, and land will become less productive because less vegetation will be able to grow. As a result, the soil is both lacking in nutrients and becomes more fragile, leading to increased soil erosion by wind and water.

There are a number of human factors that impact on desertification – one of those is over-cultivation. Natural increase rates in LEDCs are often very high due to high birth rates and falling death rates – for example, in the Sahel, population is growing by 3% a year but food production is only growing by 2%. This puts increased pressure on farmers to exploit marginal areas of land, and to engage in poor farming practices such as not leaving fallow patches, or slash-and-burn, which reduce soil quality and leave it more open to erosion. Overgrazing is a problem too, as vegetation cover may be quickly removed by animals. LEDC governments, encouraging cash cropping for export are making matters worse by increasing pressure on the land. Poorly managed irrigation schemes can reduce the water table to the point where there is no natural groundwater, and salinization has taken place due to salts being carried to the surface through capillary action.

The consequences of desertification impact hugely on agriculture, as farmers find less and less suitable growing land – if it becomes irreversible, then it can result in famine, where huge populations are affected. Because there is less...
vegetation cover, events of high rainfall may lead to dangerous mudslides, because of the large amount of loose debris on steep slopes - this was the case in Peru, where a mudslide in the Chacra district claimed 100 lives. Desertification affects biodiversity because it limits the number of organisms that can survive in an area, but its impact on farming, and therefore the risk of famine and/or damage to a country’s export earnings, is more serious and immediate. Sound; sound the subject; physical causes - a non-authentic.

Consequences again less detailed. Human causes predominantly.

Arid and semi-arid environments pose numerous problems to their inhabitants, but people have come up with ways of managing them. One such problem is the lack of water in deserts, which makes agriculture difficult or impossible. We have seen that irrigation can make a major difference - Sumerians along the banks of the Nile in Egypt (an alluvial river, since it is served from outside a desert region) have over time constructed a sustainable and well-integrated system that allows the growing of dates, among other crops. However, in other LEDCs, there are times when it has little impact, such as in Turkmenistan where 1/3 of water is lost through irrigation before it reaches the fields, and this decreases potential agricultural output by around 25%, also linked to the fact that 1/4 of the land suffers from salinisation,
In the Sahel region of Burkina Faso, local farmers have been working directly with Oxfam, an NGO, on a grassroots program to help with farming. Aid workers have helped farmers to build ‘diggertiers’ (stone walls), and have taught them how to build depressions in the ground (so called ‘tanks’) to ensure that more rainfall is trapped, to give it longer to soak into the ground. They have also been educating people in the dangers of building wells in areas where groundwater is already very low. Since Oxfam got involved, agricultural production in the area has increased by around 40%, significantly contributing to the country’s exports.

Such schemes are often much more successful with outside help or assistance, but the settlement of Chiriguinos in the Atacama Desert in Peru is an example of locals working together to manage their environment. By setting up large nets on the hillsides they were able to harvest water from the consistent fog that came in off the Pacific – 100 nets were constructed, each capable of harvesting 170 litres of water a day from condensation, and the village’s overall water consumption more than doubled. While successful, this sort of solution would be much more difficult to implement on a larger scale.

The Draa Basin area in Morocco has been successful in starting a small tourist industry – 8% of the population are employed in it, and tourists can visit sites such as the local markets,
Examiner comment – grade A

(a) The response shows a good understanding of desertification. It is a sound response that covers the human causes of desertification well, although the physical causes of drought and climatic change are less well developed.

(b) The response covers a number of detailed examples of attempts at development within semi-arid regions that are made relevant by assessments of the management issues that had characterised them.

Mark awarded = 19 out of 25
Example candidate response – grade C

2a) Desertification is the degradation of desert-like conditions into arid areas. It is a combination of both anthropogenic and natural causes. Natural causes are those which are beyond the control of humans which may include lack of rainfall or an increase in temperatures. Anthropogenic causes which happen to be the main cause are those induced by man. Some of them include:

i) Overgrazing: This is when the carrying capacity of land has been reached. Fallowable plants are removed and replaced by indigent ones. Trampling of the soils reduces the soil structure. Thus will reduce the vegetation cover.

ii) Over-population: This is likely to occur due to an increase in population meaning there are more people to feed. This can reach the ground. Reducing the soil fertility.

iii) Sandblasting: Occurs when poor irrigation schemes lead to the accumulation of soil deposits. Rain is cannot therefore source a condition hence they also.

iv) A Desertification: Presents no protection cover of vegetation. This is a result of over-population meaning there are more people to feed.

v) The consequences of desertification include increased drought due to lack of vegetation & rainfall, food shortages, agriculture may no longer be practised due to the reasons listed above. Reduction in precipitation levels, global warming and famine. There are a great number of places at risk for these sandy countries.
8b) Abates are hostile environments with harsh conditions. However, man has attempted to reduce their hostility by a large number of methods making it more suitable for them to reside [abates are areas of low & arid] farming. The introduction of various irrigation systems such as drip irrigation has made farming possible in these areas. Drop irrigation in Turkeno, Kenya. Other methods may include the building of dams in Egypt. And areas are areas of high wind speed & energy. Which can lead to sandstorm posing a threat to human life.

Attempts on Saudi Arabia have been made to try and reduce the speed of wind by the building of walls to decrease the wind's energy & pouring of tar to reduce the movement of sand. Sand Dunes are dynamic features meaning they can change their shape & size. Land has been reclaimed. The moving of these dunes are dangerous and can destroy entire settlements. In the Pakistani desert vegetation was grown on sand-dunes to stop stabilising them & discourage movement. Moisture is a major problem in arid areas. It is almost non-existent or limited. In the Sahel, concrete lines were built on the ground to collect any available moisture. Laying the irregular nature & precipitation limits the growth of vegetation. Attempts have been made in the Pakistani desert to grow a special breed of shrubs and trees that can survive in the extreme desert conditions to encourage precipitation.
Examiner comment – grade C

(a) Desertification is defined and a number of human causes are identified and described. The consequences are briefly described but possible physical causes are not examined.

(b) The answer introduces a number of activities that could be employed in desertified areas such as drip feed irrigation and dune stabilisation. The answer is rather disorganised ranging between arid and semi-arid environments. Management issues are not addressed, nor are the limitations imposed upon development by the environmental conditions.

Mark awarded = 13 out of 25
Example candidate response – grade E

8a) The possible cause of desertification can be identified as overgrazing, destruction of plants in dry regions and incorrect irrigation in arid regions. Overgrazing was not so much of a problem a long time ago because the animals tended to move where the rain fell. People would move with the animals. However, today people have a steady food supply and that means they do not have to move around. So people use fences, which can mean that the animal stays in one place, which causes overgrazing.

Secondly, the destruction of plants in dry regions can cause desertification to occur. Trees are being cut down as a source of fuel and once the trees are cut down there is nothing to protect the soil. It can turn to dust and is blown away by the wind.
Thirdly, incorrect irrigation is commonly used in poorer communities. Often, where there is a lack of water, farmers use canal irrigation and other poor techniques. This type of irrigation causes a build up of salt in soil.

Finally, human activities can also cause desertification. These include civil wars in Ethiopia and Eritrea and Somalia.

The consequences of desertification are that soil becomes less usable, vegetation is damaged, there is a risk of famine and food loss and people’s lives can be affected.

Firstly, the soil can be blown away by wind or washed away by rain. Also, the wind can remove the nutrients in the soil. Salt can build up in the soil which makes it difficult for the plant to grow.

Secondly, desertification can bury the plants and leave their roots exposed. Also, when overgrazing occurs, different species of plants may be lost. Also, places which experience war and poverty are most likely to experience famine. Drought and poor land management contribute to famine.
Thirdly, a further consequence of desertification is that the soil is not suited for growing food and therefore the amount of food being produced will decrease. If population is increasing then this will cause economic problems and starvation.

Finally, desertification can cause flooding, poor water quality, dust storms and pollution. All of these effects can hurt people living near the affected region or area.

An example of desertification is the Sahel Desert. Desertification is becoming a huge problem in the 1950s people settled into this region in the areas where water was unavailable. This caused overgrazing, which is one of the biggest causes of desertification. Eventually all the perennial shrubs were destroyed because of grazing and they were replaced by annuals. Then the annuals were over grazed which only left bare soil. A lot of the top soil was then washed away and only rocks were left. Furthermore, the silt turned hard when the rain landed on it and the plants could not grow because the roots could not get through this hard layer. Now this region has turned completely to desert but it continues to expand. The long term consequences of this are that the people...
a) It could die of starvation. The cattle could die of starvation and the soil may become completely useless.

b) Managing an arid or semi-arid environment has its obvious challenges. As discussed there are large areas affected by the rapid growth and spread of desertification. This means that increased knowledge and education on how to manage these areas is required.

One strategy which could be used in managing this environment is through dune stabilisation. This involves the replanting of trees, grasses and shrubs on sand dunes in order to stabilise the dunes and cover them in fertile farming land. This resulted in the sand dunes becoming stabilised and the community providing invaluable farming land. An example of this is in the sahel in Africa. This involved a project organising community workers and village volunteers becoming trained in dune stabilisation techniques. The planting has been a great success with successful harvests and the return of wildlife.

Secondly, an important factor in trying to manage these areas is to attempt to increase the water retention capacity of soils. One way in which this can be achieved is through the
Use of mulches. Mulch is organic material that is slightly composted. It is then used as a covering around plants to prevent evaporation of moisture among other things. Regular use of mulches helps drainage and improves the soil. They also cool the soil which reduces the amount of water which is needed particularly during the summer months.

Thirdly, management of these areas can also be helped by the exchange of livestock. An example of this is in Tunisia where a fast growing population and a need to provide more food resulted in the settlement of many nomads in new villages. This increase in population contributed to an increase in livestock which resulted in overgrazing around the villages. Educating the villagers has resulted in the exchange of this livestock for example the proportion of goats to sheep has gone up because the goat will use poorer quality grasses to eat than sheep. This has allowed the areas around the village to recover.

Finally, with regards to assessing the extent to which it is possible to manage an arid or semi-arid environment, there are a whole range of management techniques including the reduction of salinisation and
Examiner comment – grade E

(a) A rambling account of the causes of desertification that only deals with overgrazing and other human activities. No indication is given of the nature of desertification or the role of drought.

(b) Some management strategies for arid areas are outlined in a very unspecific manner. The results of such strategies are not described or assessed and little account is taken of environmental limitations upon development.

Mark awarded = 11 out of 25
Section A

Question 1

Production, location and change

Only one question may be answered from this topic.

1. Fig. 1 shows actual and projected trends in world food production, 1995–2018.

(a) (i) Describe the trends shown in Fig. 1. [4]

(ii) Outline three reasons for the projected growth in food production. [6]

Fig. 1 for Question 1

Actual and projected trends in world food production, 1995–2018

Key
- Africa
- Asia Pacific
- MEDCs
- Latin America
- World
1. **Fig. 1 shows actual and projected trends in world food production, 1995–2018.**

 (a) (i) **Describe the trends shown in Fig. 1.** [4]

 The actual trends increase with fluctuations, e.g. Africa, except for MEDCs which is quite flat. Projections are all of growth, but vary, the greatest in Latin America, Asia Pacific performing strongly, the least in MEDCs, 3, with some elements of data support 1.

 (ii) **Outline three reasons for the projected growth in food production.** [6]

 Credit each reason 2, or exceptionally if well-developed, 3. For example:

 - increasing demand as world population grows
 - increased use of irrigation
 - intensification e.g., through use of machines, fertilisers
 - education, agricultural extension, training
 - land reform
 - government programmes and incentives

 also credit, if offered

 - positive representation of data (UN source).

(b) **Use one or more examples to explain why agricultural change is easier to achieve in some cases than in others.** [15]

 An open question allowing candidates to use the material they have. The explanation is itself an assessment. Appeal may be made to reasons such as desire for change, resistance to change, education/literacy, profit motivation, barriers, availability of finance, external assistance, weather, government will, attitudes, food demand, suitability of initiatives, etc.

 Candidates will probably:

 L3 Provide an effective and comparative overview, identifying reasons and/or factors clearly and supporting their responses with detailed evidence on both sides. [12–15]

 L2 Offer an explanation which is satisfactory as far as it goes, perhaps containing good points, but lacking detail or development. May be unbalanced towards “some” or “others”. [7–11]

 L1 Make a simple response of basic quality which may be general, or descriptive rather than truly explanatory. Focus weakly on “agricultural change”. Offer notes or fragments. [0–6]

 Total: 25
Example candidate response – grade A

The trends showed in fig 1 suggest that they would be an increase in food production in all the continents, Africa, Asia, Pacific, MEDCs, Latin America which has increase the world production in the world from 1995 to 2019.

The fig shows that Africa would have a rise in food production from approx 0.83 in 1995 to a projected rise at food production being set at approx 1.58 in the year 2019.

The figure also shows that there will be a rise and fall in food production rate in most of the continents between 1995 to 2007 but no fall in food production from 2008 to 2019.

The figure also shows a trend that suggest unlike in 1995 to 2007 where Latin America had a rapid increase in food production from approx 0.83 in 1995 to approx 1.3 in 2008 it will have a more gradual increase in food production from 2008 to 2019. 2008 being at approx 1.3 and 2018 approx 1.79.

The fig also indicates that...
The projected growth in food production could be due to several factors.

Firstly, it could be due to many continents/countries in the world starting to adapt to green revolution. This encourages an increase in food production as it supplies farmers with fertilizer and etc. in order to make farming more intensive. This makes land fertile so more crops can be grown.

This can also be due to the availability of technology in farming in LDC countries e.g. Kenya. With technology and machinery, it will be a rise in food production as farming will become faster and more effective with the use of machines such as e.g. tractors and etc. This increase can also be due to more stable weather conditions.
Governments in LEDCs. This is so as hostile political environment in places such as Somalia (LEDc) the fighting between rebels bombing land and ambush in each others farmland leads to a lower food production. Conversely if conditions are stabilised as in MEDCs more food production will take place.
Agricultural change is easier to achieve in MEDC's such as in Europe with the CAP than LEDC's e.g. Kenya due to traditions and customs. In cases such as Germany where people are educated and not tied down to traditional customs, it is easier to undergo agricultural change as people are more willing for the changes as they know the benefits it holds.

In LEDC's such as Kenya, the Maasai of East Africa resist agricultural change as they are against these traditions, for example when type are encouraged to emphasise more on quality rather than quantity of cattle they reject this as their customs believe that a large herd of cattle is a symbol of wealth and respect in the community.

Agricultural change is easier in MEDC's as people are more educated and are
Thus more literate. This means they can read and interpret how to apply fertilizers and other land effectively to rise in food production etc. This rise can lead up to agricultural change faster. In contrast in LEDCs where there is a large number of uneducated people, agricultural change is harder to switch to as people do not know how to read instructions on how to apply fertilizers or operate machinery or read books on new farming methods.

Another reason agricultural change is easier in MEDCs is because it is more economically prosperous. This means most farmers have a higher income and can thus afford to buy fertilizers and machinery needed for agricultural change. This is opposed to LEDCs where most farmers find the fertilizers and machinery too expensive to buy and so are only willing to buy these after they have seen its benefits from richer farmers.
Examiner comment – grade A

A good quality attempt, displaying high levels of knowledge, understanding and skills. The description of the trends in (a)(i) is careful and detailed, using data from Fig. 1 taken from both axes and covering a number of named world regions. It is, however, clearly unfinished and the grasp of the nature of the index is not convincing. Full marks are achieved for (a)(ii) for three different reasons, clearly identified and satisfactorily developed. In (b) the candidate contrasts achieving agricultural change in MEDCs and LEDCs, which is one valid approach to the question. The response is balanced and uses detailed evidence to develop each aspect of the explanation, for example in relation to agricultural change in the candidate’s home country of Kenya. It shows a solid grasp of the subject area and enters Level 3 by descriptor. As with (a) it is unfinished. It could be improved in a number of ways, for example with attention to factors in another dimension, such as political; more specificity about economic factors; or by an holistic approach to one case of agricultural change to complement the reason-by-reason approach taken here.

Mark awarded = 21 out of 25
(a) Africa's trend was unstable between 1995 and 1999 with an increase and then a decline by 0.05. From 1997 to 2005, it was on a steady increase of about 0.6, it however stabilised similarly as to the 1995 and 1997 period in 2007. The projected growth a decade after 2009 is expected to be about 0.7 to peak at 1.05.

Asia Pacific rose from 0.8 to 0.9 from 1995 to 1999 and by 2000 is at 0.9. After a year and a half of stagnation, it rises to 1.3 by 2007 before levelling out till 2009. If projected growth is steady to about 1.7 by 2019.

The MERCs have a warming growth with an increase and decrease between 0.02 and 0.04 until 2008. They decline by 0.01 as projected by 2009 and have a slow but steady rise to 1.05 by 2019. This is the lowest projected rate.

Latin America has a slow and rapid rise up to 2.07 from about 0.8 in 1995 to 1.05 in 2005. The projected rate is higher.

The world trend is almost similar to that of Latin America only that it mares slightly a the 1994-2001 season.

It rose from 0.8 in 1995 to 1.2 by 2008. It is projected to reach 1.4 by 2019.

(b) The increase in mechanical knowledge in Africa and Latin America promises an increase in food production. Manual labour is one of the main causes of slow growth (over-reliance).

By learning from past mistakes and adopting water-saving policies, countries and governments are expected to adopt the positive methods such as new irrigation techniques and promising better future harvests.

Countries no longer depend on excess water for planting...
especially with cases of global warming. Thus wheat and barley that do not need a lot of rain are being planted in larger farms.

2 partial reasons

(b) Agricultural change is a necessity, as one cannot foresee even the near future. Many countries have embraced agricultural change while many more have not mainly because they cannot.

Climate is a reason why agricultural change is easier for example in the U.S.A with tropical and semitropical climates in some areas. This allows a change or experimentation of crops such as cotton, rice, sugar to tobacco and sugar

The same cannot be said for Egypt which is an arid land. It struggles to grow and crops away from the rice. So all its farming agriculture is focused around these. One cannot experiment with other foods as the lives of the locals will be endangered if results are poor.

The type and fertility of soil also determine where agricultural change is possible. Soil that has been used for maize plantations can later be used for beans and legumes. However, once soil is exhausted, it cannot be used for agricultural purposes.

Irrigation methods also make it easier for certain agricultural changes to be made. For example, the Mwea irrigation scheme uses the canal method for growing rice and bananas. This allows them to control the water flow. In contrast, the Eastern part of Kenya focuses on banana plantations. They do not use the canal irrigation method and so they cannot produce rice which requires a more stagnant water.

The cultural practices, for example in Kenya, tribes can be distinguished by their own agricultural produce. The Kikuyu people are known for the boroons. It is not easy to think
Examiner comment – grade C

A solid attempt overall, with variable quality of outcomes across the three parts of the question. The response to (a)(i) is awarded full marks because of the detailed approach taken, the level of data support supplied and the careful attention to and expression of ‘trends’, i.e. changes over time. In the response to (ii) the reasons are skeletal and need clearer identification and fuller development. The candidate attempts to link the first broad reason to two of the regions in Fig. 1, although this was not necessary to achieve full marks. A third reason is difficult to discern in the material offered. The response to (b) is of an appropriate length and shows knowledge and understanding of factors affecting agriculture, which the candidate arranges by type. There is however not enough of an emphasis on change although there is potential for this, particularly in relation to some of the content about Kenya. Compared to the previous example response, the attempt to contrast this with other countries (USA, Finland, South Africa) is thin, but the understanding shown is firm.

Mark awarded = 14 out of 25
Example candidate response – grade E

1. The actual world food production trends are not as high as the projected world food production trends meaning that they are projecting an increase in world food production. MEDCs are projected to have the lowest food production and Latin America on the other hand is projected to have the highest food production. All in all the trends show a prediction of growth in food production for the whole world.

2. Three reasons for the projected growth in food production are, firstly efficiency in farming, farmers will be well prepared for the farming season and improved farming skills. Secondly due to technology farming machinery would have improved making it even easier to farm large scale. Another reason is that the governments will be putting a lot of capital into farming helping the farmers with seeds, machinery, pesticides, tractors, everything needed for farming, therefore there will be an increase in harvests.

There will be more of commercial farming than subsistence farming.
b) Agricultural change is easier to achieve in some cases than others because for example there are places where farming is being done on a large scale. In Canada in the Prairies, all they have ever farmed is wheat, bringing about change in such an area is very hard because that is what they are used to farming and that is what the weather allows.

Another example is Zimbabwe. Before independence, Zimbabwe farms were producing a lot of stuff. Zimbabwe was even known as the Bread Basket of Africa. However, this only lasted for a few years after independence because the government decided to take away farms from the white farmers who were doing very well, and gave them to Zimbabweans who did not even have an idea of what farming is all about.

This led to a decline in yields, and because of corruption, the machinery, fuel and other stuff that is given to farmers was not even used on these farms. This even led to the economy of Zimbabwe being affected because the economy depends on farming too.
Examiner comment – grade E

A basic approach is taken to the interpretation of trends in (a)(i), referring only to the world and the highest and lowest lines (Latin America and MEDCs). Growth is identified but there is no data support and grasp of the index is not clear. In (ii) the candidate locates the response correctly in terms of subject content and tries to offer the requisite reasons, but the content is broad, overlapping and loosely worked. Tighter expression of reasons, with some specificity is needed to gain the marks. In (b) there is evidence of learning, for example in relation to the Prairies, but the link to agricultural change is unconvincing. The content about Zimbabwe is true but descriptive and not made as relevant to the question as it could be. The closing comment about political instability affecting change is the best point, but briefly made. As a whole the answer is unbalanced and thin and even the content about Zimbabwe remains generalised at the level of the name of the country only.

Mark awarded = 9 out of 25

Question 2

2 (a) (i) Define the terms industrial inertia and industrial agglomeration. [4]

(ii) Explain the disadvantages that may result from industrial agglomeration. [6]

(b) To what extent is the informal sector of more importance to individuals than to the economy of a country? [15]
2 (a) (i) Define the terms industrial inertia and industrial agglomeration. [4]

Industrial inertia is the tendency for industry to remain in its existing location even though the factors which led to its location there no longer apply. This arises as many industries build up local advantages such as skilled labour and an immobility of capital assets, such as plant and machinery, but may also relate to behavioural factors and government support. 2

Industrial agglomeration is the concentration of industry in close proximity when several industries or companies choose the same location. It occurs in order to minimise costs, to obtain external economies of scale through linkages between firms, or to benefit from locational incentives. 2

(ii) Explain the disadvantages that may result from industrial agglomeration. [6]

They may be social (e.g. breaking of existing relationships with local community); economic (diseconomies of scale, heightened competition, reduced access to local market); environmental (negative externalities such as noise, lack of space, air pollution); or political (e.g. planning issues). If disadvantages described without explanation, max. 3. Credit disadvantages in and beyond the agglomeration.

(b) To what extent is the informal sector of more importance to individuals than to the economy of a country? [15]

The informal sector’s potential for economic growth is limited (most establishments remain small-scale, low turn-over, subsistent). Some areas have seen success through the encouragement of small business initiatives and the input of charities or aid programmes. There is growing recognition of the sector’s potential. However few informal firms have the necessary capacity in terms of wages, contracts, premises, registration, advertising, etc. without outside help. Many governments now take a more tolerant approach to it as a way to reduce unemployment and dependency. For the individual it provides an opportunity to earn income, however limited, and thus to ensure survival. It may be particularly important for those with little or no education and therefore little opportunity to enter the formal sector. It is frequently labour intensive and so can provide employment for many.

Candidates will probably:

L3 Develop a clear assessment of the potential and limitations of the informal sector for the individual and for the economy, based on detailed examples and good conceptual grasp of the sector’s operation in the ‘big picture’. [12–15]

L2 Make a reasonable attempt at assessing the informal sector’s importance within the economy and/or for individuals. May lack the specific knowledge, conceptual understanding, or skills of assessment to develop it more fully. [7–11]

L1 Offer only a few simple points about the informal sector in a description that makes little or no assessment of importance to either the individual or the economy. Write in a general way. Offer fragments or notes. [0–6]

[Total: 25]
Example candidate response – grade A

Ans 2a(i) Industrial inertia is caused by factors influencing industrial location. It means that although the initial locational advantage of locating in one location (usually agglomeration) may no longer exist, industries still tend to locate there, although disadvantages can result in industrial inertia. It may be because of agglomeration in other industries and the presence of raw materials, e.g., Sheffield still having steel/iron ore industries despite industrial agglomeration being the tendency of raw material exhaustion.

Industrial agglomeration is the tendency of industries to locate close to each other in the same location. This may be due to economies for linkages and agglomeration, e.g., industries in Reading are very concentrated. (UK)

(ii) RT. 0
Industrial Agglomeration, mentioned in Myrdal’s (Econometric) Cumulative Causation model, may lead to disadvantages in the final stage of faster growth. It may occur initially too.

One of the disadvantages is high costs of raw materials, such as timber, oil, steel, and labour, even other services—leading to lower profit and higher production costs. This is a result of increased demand for finite, scarce resources available in the area. Compromise for...

Another disadvantage is associated with externalities of production. Pollution, traffic and congestion may not only increase costs in terms of time, health, but also health of workers. This may lead to decreased productivity. It may negatively affect industries in the same way.

Another disadvantage is Market Share. If more industries locate in a particular area, it increases competition among them for markets to sell their products in. They may capture a lower population and sell lower units of a good and
2 (b) Informal sector of Industry is one that consists of the sector not legally registered or following normal rules. It tends to be small-scale, hence employ workers of lower skill, and make use of local raw materials.

Informal Sector is of importance to it is perhaps of great importance to a country's economy and individual himself/herself. It is more important to the individual because they need it for their own survival and income.

Today, increasingly governments are encouraging informal sector growth.

60% of labour force in developing countries work in informal sector which many (informal) comprise of shoe-making, fruit-selling, distributive jobs such as and others.

In India, the government has not exclusively (restricted production of 600 more goods to these this sector) It recognises its role in the country income generation.
In Kenya, the government recognises the role of this sector in creating jobs in areas where formal employment is difficult to find. The Prime Minister helped set up "Jua Kali" factories protecting the "Ju Kali" from the hot sun. These cater to needs of local people by manufacturing hand-made stores, utensils and other steel utilised in cheap prices and using local, recycled materials.

They reduce the burden of government to invest in capital, import technology. They are sustainable and well suited to needs of local people.

Bag Formal Industries often sub-contract small production to some formal sector and thus reduce cost. In Pakistan, much of agricultural small-scale cottage industry is informal, but it contributes to cities. Dairying in cities provides milk to urban dwellers. Pakistan is famous for exporting traditional carpets at high prices to developed nations such as USA. These are weaved by women in their homes or small sheds. It helps them earn income but it too.
Examiner comment – grade A

The candidate provides two effective definitions in (a)(i), one notably longer than the other for no clear reason. The misspellings and crossings out can be overlooked. The conceptual grasp of both terms is strong and sufficient to achieve full marks. A number of disadvantages are identified and described in (ii) and, whilst the explanation given is correct, it could be more fully developed. The response to (b) begins well with a definition of the informal sector, followed by an initial assessment in the question’s own terms. It then develops a number of ideas, drawing on examples from a number of LEDCs. Using the descriptors, in character it is a Level 3 response, and it would be possible to deepen the analysis, especially with respect to the national economy, and the sector’s real limitations for both, in order to achieve a still higher mark.

Mark awarded = 20 out of 25
Example candidate response – grade E

2a) Industrial agglomeration is the formation of many secondary industries located close to one another such as components to a car being located closely together, thus saving money on sending goods and receiving materials. Industrial agglomeration is when companies locate great distances away from one another such as food-based industries.

2b) Industrial agglomeration can often be a risky way of creating goods or materials as if the quality of the end product is not at its highest, then the entire assembled product is often sent back to its secondary sector producing positive feedback. The agglomeration often requires a large incentive from either international companies or from countries such as trade guarantees or export tax to be only often many places will not provide such a luxury and so agglomerated areas can be of high cost.
Many families rely on the informal sector, which is mostly dominated by women and children of a young age.

In Kenya, there is an informal sector called "hot under the sun" in Swahili. Women and children collect scrap metal from the streets and sell it down to its pure form and then sell that on the streets or to the large industries in Kenya. The Kenyan government and banks have realised the importance of this sector and are even offering small loans to the workers.

The informal sector is an entirely private working sector and doesn't contribute a large amount of money to the government in the form of tax or otherwise. The informal sector's profits are made up of mostly small change that are given to shoe polishers, street food vendors or small farmers. The informal sector obviously isn't granted the same amount of government assistance as transnational companies are, so many are not given the opportunity to expand.

Many governments have allowed the informal sector to expand faster than their original state. Such as Kenya, who see the low-income businesses as a way of keeping up to 60% of the population employed.

The informal sector only really contributes to the individual person rather than the country as a whole, as informal products or services are often seen as
Examiner comment – grade E

The overall quality of this response is a little better than a grade E. It is included for what it demonstrates in terms of characteristics. The definition of the two terms in (a)(i) is not in the order they appear in the question. The grasp of industrial agglomeration is firm and sufficient, whereas that of industrial inertia is wrong and not worthy of any credit. Candidates may be asked to define any term which appears in the syllabus and definitions are also useful in parts (b) in order to shape and direct the writing. There is little substantive comment in the response to (a)(ii) beyond a hint about cost in the final sentence. To score more marks a response based on the effects on production and considering different dimensions, as in the mark scheme, is needed. In (b) the candidate agrees with the question and does not develop the aspect of the economy of a country adequately. The material about Jua Kali is realistic and well-directed, but the answer remains relatively undeveloped and more explanatory than truly evaluative in approach. It could be improved by a more balanced analytical treatment or by the inclusion of further exemplar content, if known.

Mark awarded = 11 out of 25
Question 3

Environmental management

Only one question may be answered from this topic.

3 Fig. 2 shows the capacity of wind turbines installed each year by world region, 2003 to 2008.

(a) Describe and suggest reasons for the trends shown in Fig. 2. [10]

(b) For a named country, assess the extent to which renewable energy sources can meet its energy needs. [15]

Fig. 2 for Question 3

Capacity of wind turbines installed each year by world region, 2003–2008

Key

- 2003
- 2004
- 2005
- 2006
- 2007
- 2008

MW

Europe, North America, Asia, Latin America, Africa and Middle East, Pacific
Mark scheme

(a) Describe and suggest reasons for the trends shown in Fig. 2. [10]

General increases in Europe, North America and Asia: particularly rapid for the latter two. In Latin America, Africa and Middle East and Pacific, much lower installation levels and no discernable trends. Trends need data support from Fig. 2.

Suggested reasons will probably be economy or development based to explain the differences in the trends, but can equally be population based, especially in the case of the Pacific region. Some areas, notably Middle East are rich in oil so see little need to develop renewables. Technology transfer is needed in many regions and other priorities may exist, etc.

Mark on overall quality, not seeking comprehensive answers, bearing in mind the three bands of marks and levels of response: 0–4, 5–7 and 8–10. Descriptive responses remain in the lowest band, whilst only reasons may be awarded up to 7.

(b) For a named country, assess the extent to which renewable energy sources can meet its energy needs. [15]

Candidates may well focus on electricity generation, but there are many other energy needs, particularly transport, but also cooking and heating, etc. The balance of the argument will depend on the country chosen, MEDC or LEDC. Few countries can depend on renewables for even their electricity generation.

Candidates will probably:

L3 Develop a high quality assessment of the energy scene, supported by detailed examples from the chosen country. Demonstrate high order conceptual understanding. Structure the response effectively and make an assessment based on the evidence provided. [12–15]

L2 Provide an assessment of sound quality, which may be good in parts, but which remains partial or limited overall. It may be broad and lack detail, possibly concentrating on electrical generation with limited consideration of the relative roles of renewables and non-renewables. [7–11]

L1 Make one or more basic points about renewable and non-renewable energy sources. Have little specific knowledge of the chosen example and offer little or no true assessment. Notes and fragments remain in this level. [0–6]

[Total: 25]
Environmental management

(a) Figure 2 shows that in every world region, the capacity of wind turbines installed was greater in 2008 than in 2003. However, the capacity of wind turbines installed was greater in Europe, North America, and Asia every year compared to Latin America, the Pacific, and Africa except the Middle East.

For Europe, North America, and Asia, their largest increase in capacity of wind turbines was in 2008, and was much, much higher than any increase in wind turbine capacity in the other 3 regions. In Europe, North America, and Asia, their largest increase in wind turbine capacity was between 8500 MW (megawatts) and 8800 MW, compared to the wind turbine capacity increase in a single year in the other regions. The largest increase in each of these 3 regions was still some 7000 to 8000 MW less than the increases in Europe, North America, and Asia (the Pacific’s largest increase was in 2008, at 500 MW; Latin America’s largest increase was in 2006, at 300 MW; and Africa and the Middle East’s largest increase was in 2006 and 2007, both increasing by only 200 MW).

Careful planning.

One possible reason for these trends is that there is much more wealth in Europe, North America, and Asia (mainly from Japan, China, Korea (South) and India), so
These regions can therefore afford the expensive turbines (costing between £4 million and £7 million, depending on whether they’re onshore or offshore). The less wealthy in the lesser developed countries of Africa, Latin America, and the Pacific might not be able to afford wind energy, preferring to remain with cheaper fossil fuels.

The good educational attainment in Europe, and North America, and partly in Asia, could also be behind why the turbines and their technology are being pioneered in these developed nations. The higher scientific knowledge of North America and Europe has been driving the desire to develop wind as a source of electricity, and resulting in more turbines being erected. In Asia this could be possible, but is less likely to be a key factor.

Developing countries in Africa, the Pacific and Latin America are less worried about using renewable resources such as wind, so they don’t see the desire to switch. The developed world does care, and is the driving force behind laws and regulations such as the Kyoto Protocol and the Renewables Obligation. Aside from the USA and China, virtually every other nation signed these laws. As the developed nations proposed these changes, they have to be seen undertaking them and actually putting them into practice.
b) A renewable energy source is one that is non-finite - it is sustainable. This is because using the energy source now will not reduce its availability for future generations.

The UK currently operates with a strong dependence on fossil fuels. These non-renewable (and therefore finite) energy sources (coal, oil and natural gas) currently supply the UK with 74% of its energy. However, the UK has pledged to reduce its reliance on fossil fuels, under the Renewables Obligation promising that 40% of its energy will be generated by renewable sources by 2025. Currently the UK’s energy proportion from renewable resources (excluding nuclear) is roughly 8% (made up of mostly wind (4%) and hydroelectric power (2%)).

The UK has been at the forefront of the drive to use wind power because of its prime location to maximise the use of wind. The UK has a large coastline and the winds are mostly within a turbine’s operating range (5 miles per hour, up to 60 miles per hour). Currently the recent construction of 5217314 wind farm off Kent has lifted the UK’s wind capacity to 3.3 GW. However despite this obvious advantage, there is a reluctance to move to wind. The main reason is cost. Experts have predicted that if the UK unlocks its full wind potential then the UK could produce 30 GW (Gigawatts) annually (half its peak demand). However this massive improvement to the sustainability of the UK’s energy
Strategies will come at a huge cost, costing the government over £30 billion in subsidies. This subsidy would be to encourage firms to switch to using wind to produce energy, but to discourage them from building consumer energy prices up too far.

Whilst 3.6GW can be produced when the conditions are right, when conditions are not good for producing wind energy then there will be an electricity shortage. If wind is used to generate energy then other energy sources need to operate as backup to compensate when the wind isn't blowing. Other options for the UK are hydroelectric power and tidal power; solar isn't really a viable option at such a high latitude. However, there are some ecological problems with HEP and tidal, whilst experts believe that the UK's hydroelectric potential is not fully unlocked (including the rejected proposals for the Severn Barrage).

The UK currently depends on nuclear for 18% of its energy. Whilst this is not a sustainable energy source in the long term, nor is it renewable, it might have to form part of the UK energy strategy whilst other renewable sources are identified and taken advantage. To summarise, the extent to which renewable energy sources can meet the UK's energy needs is currently limited. Whilst there is huge potential for wind as a energy source, relying on it could lead to an energy gap. Other sources such as hydroelectric power and tidal play a minimal role in the current UK energy strategy, but ecological damage (and similarly, costs - construction and maintenance) might have to be overlooked in order to shift towards a sustainable and renewable energy strategy. Although wind does have its problems, there's nowhere in the world where it will be most effective it's in the UK.
Examiner comment – grade A

This is a well-written and carefully structured response which demonstrates good knowledge and understanding of the global context in (a) and the chosen national context in (b). The approach to Fig. 2 is well-organised and insightful, moving from an overview in the first paragraph, to more detailed analysis in the second. Whereas the question is about ‘trends’, i.e. changes over time, and the analysis is strong, the candidate falls into the limited practice of identifying the year of the greatest capacity installed in each world region. As such it is the description element of the response which is not full. The reasoning advanced is realistic, supported with some place-specific knowledge and demonstrates both a global perspective and a sense of geographical judgement. The approach to (b) is evaluative, well-informed and convincing in terms of country detail and contemporary reality and moves easily between different scales. Although possible approaches vary, one way that the assessment of extent could be further enhanced is by attention to the contribution of the non-renewable energy sources outlined in the second paragraph.

Mark awarded = 21 out of 25

Example candidate response – grade C

As a general trend, there has been an increased installation of turbines since 2003 to 2008. With the MEDCs as a whole investing more in wind turbines in comparison to LEDCs, with Europe the most due to EU policy of cutting energy contributing 20% of power is to be generated via renewables by 2020. This is why they had in 2005 5,500 MW to 2008 9,000 MW installed. However, as a whole, the MEDCs also account for 30% of the earth’s population consume 70% of global energy. Furthermore, MEDCs are investing massively in renewable energy sources due to sustainable energy sources and in the case of turbines, when an investment is around 10 years. Asia also investing a large amount from 1,000 MW to 9,000 MW due to being a “Tiger economies” passing rapid growth and in search of many energy sources due to population growth and industrialisation which is helping to supply their growth. However, the LEDCs countries investing less than 1,000 MW a year due to their lack of funding and need for energy and governments often have more important schemes such as economic development which does not require energy. Another problem is that the middle east are investing little in wind turbines due to its large availability of oil and in turn there is no need.
This wind power investment.
A problem with Fig 2 is it is only 2003-2008 and therefore does not show previous investment such as Denmark (70% wind power) and the likes of the US in the EU are rare suited to wind power. Other countries like Latin America are less suited as wind may be more effective in producing energy.
In the case of China, energy needs are increasing due to several factors. There is an increasing population in the short term due to the child policy act which will be due to predicted growth in population around 2025. Plus according to Clark's sector model the movement from agriculture to industrialisation and therefore urbanisation leading to heavy industry requiring vast amounts of energy, plus the improvement of quality of life due to increased incomes leads to larger energy consumption per capita. For China these policies predominantly involve around growth of GDP and drive to catch up with the MEOCs countries. However, in the process of this, renewable projects have been built and proved leading to less reliance upon coal, oil, and gas which they have invested $90 million in the last 5 years with wind turbines as these coal reserves will run out as predicted in the next 30 years, therefore when these run out they do not want to be dependent upon the middle east for oil or Russia for gas, and there is even Australia for coal due to previous events like the OPEC oil price hike in 1984 and want to have a predominance of self-sufficiency. One example of this is the investment of $25 billion dollars in the Three Gorges Dam, which stretches across the Yangtze river and 600 km wide, and has helped China's economy.
Growth by providing 18% of China's power, providing 18 million kilo watts with the potential to install more generators. Not only has this led to a reduced dependence upon coal (equivalent of 20 coal-fired power stations), it has provided the local region & Beijing with power and electricity it often lacked. Furthermore, it is a multi-purpose scheme & helps China's economic future by increasing flood protection for larger vessels, 6 months around the year; and 6 ton vessels all year round and improving drug markets trading and towns experiencing rapid growth.

Moreover, it is the project that employed 10,000 people involved in foreign turbines and the Chinese learnt from this and are leaders in hydro-turbine design, therefore can continue to build hydro-electric projects as they are because it be potential to provide electricity to the world of shine. However, the investment in all these projects is substantial and the Chinese government have lack of investment capital to continue to pump into renewable projects that are often controversial (such as the Three Gorges dams) where the World Bank pulled out of funding due to worry of impacts, such as weak liquefate dams, earth and collapse leading to a similar event of Vajirat Dam with the displacement of water topped the river and destroyed the settlement below, killing 2,434. However other predictions on Philip Rees side
Examiner comment – grade C

In the response to (a) the necessary element of description of the trends in Fig. 2 is largely overlooked after reference in the first few lines. The reasoning advanced for the trends is, however, satisfactory and shows a good appreciation of the energy scene, combining some specific knowledge of the world regions with wider geographical understanding, to account for what is shown. It would be enhanced if some assumptions were developed, for example, the meaning of sustainable or the identity of the MEDCs and LEDCs to which it refers, in relation to Fig. 2. It would also be preferable to use the phrase ‘installed capacity’ from the figure and the question stem, rather than ‘investment’, as they are not the same. The response to (b) starts well establishing ‘energy needs’ and recent initiatives and concludes reasonably well, emphasising timescale. It loses direction in the middle, rather, in that it becomes an assessment of the success of a single scheme, the Three Gorges Dam. More skilled and disciplined selection, direction and application of the material to the question and a wider approach to renewables are needed for a better quality answer.

Mark awarded = 14 out of 25
Example candidate response – grade E

3. In the diagram there is a big difference between North America, Asia and Europe, countries that have a big demand for energy, and are countries that are concerned about pollution of other forms of resources, such as oil, coal or nuclear. North America, Asia, and middle east and Pacific in comparison with other regions, they have a much lower use of wind power. There are LEDC's regions that can't afford because of economic resources the expensive wind turbines, and the difference between regions like Europe and Africa is very high, because Europe is concerned about pollution and so invests a lot of capital in a renewable energy, but Africa is a country that instead it has not yet enough money for food supply, so who can that country afford for wind turbines? LEDC's who can see that in the last years especially in 2002 it has been an increase on the wind turbines and that is triggered because of the concern of global warming, but in the LEDC region the wind turbines hasn't yet a great impact and there so there aren't any great changes or a rising of the installation of the wind turbines in the last years.
b) Renewable resources are energy that are not polluted to the environment, these are relatively new, and they never waste because they are renewable, they come from the nature power. These are solar power; solar panels transform the sun energy on to electricity, so it is always producing energy, they are most common in deserts zones of America, like wind power. The wind is a renewable source of the nature that is always blowing, so wind turbine, the energy of the wind can be transformed on electricity. Biomass is the energy received from the sewage of the animal, geothermal is the energy received from inside the earth, hydraulic is the water can be very strong so by building dams, the water pass through a turbine and transforms the velocity of the water in to electricity, (three george dam china).

UK, is a country that has a high population density, and the most part is an urban, that means that a lot of energy is prosecuted. So we concern about the polluted energy such as coal, oil, nuclear and is starting to create renewable energy. UK has started to built wind turbine on the last century, the renewable energy in UK is increasing once more, and it is intended that by 2020 the 20% of the energy in UK will be from renewable.

UK is a region that is very populated, so there is a lot of energy used for companies (light, computers) home (washing machine, light, kettles...), lights on roads. So because it needs to use a lot of energy, UK concern that using only non-renewable resources will more expensive, and the main idea is that polluted the environment, so it has started to produce renewable energy (specifically wind power), in a few years it will be from renewable but it will take a lot of years to get fully from renewable, but it won’t take too long until the most part in great of the energy is from renewable.
Examiner comment – grade E

The response to (a) comprises both elements (description/suggesting reasons), but each remains limited. The description of trends consists of an introductory statement distinguishing the three world regions on the left from the three on the right in terms of level, and a comment near the end about one year. This is inadequate as an approach. Use is not made of data to support the observations. The reasons suggested are valid and show some awareness of energy demand and supply. They do, however, lack detail and evidence of specific knowledge. Whilst the geographical meaning is conveyed, there are errors of spelling, vocabulary, expression and structure. This candidate makes the classic mistake of referring to Africa as a country. Whilst examiners do not penalise such errors or use of language they do diminish the overall quality of the response. There is a key failing in the approach to (b) in that although asked for ‘a named country’, the candidate writes about two – and so is credited for the better one. The introductory paragraph shows a modest grasp of renewables, which are defined weakly. The content about the UK is thin and could apply to many MEDCs. The appropriate use of one learned case would do better.

Mark awarded = 10 out of 25
Question 4

Mark scheme

4 (a) With the help of examples, describe and explain the main sources of air pollution. [10]

A number of approaches are possible, e.g. sectors, activities, locations. The two greatest are manufacturing industry and transport (smoke, greenhouse gases, particulates, etc.). Candidates may include fuelwood burning in LEDCs and forest clearance by burning. The use of the word main should restrict inclusion of sources such as cigarettes. Allow, but do not expect, the inclusion of noise as a form of air pollution. Indicators of quality include exemplar detail and the use of data in support of the response.

Mark on overall quality, bearing in mind the three bands of marks and levels of response: 0–4, 5–7 and 8–10. For a response without examples, max. 6.

(b) Assess the effectiveness of the measures taken to protect one or more environments at risk. [15]

Any environments are acceptable at any scale, from a local nature reserve to the world’s oceans. Candidates will need to make clear the nature of the environment, the nature of the risk and the nature of the measures in order to assess their effectiveness. This may be considered in terms of environmental degradation, improvement in quality and reduction or removal of risks. Responses which identify different outcomes in different locations, over time or in relation to different groups of people are especially creditable.

Candidates will probably:

L3 Produce a high quality assessment, well-founded in detailed knowledge of the chosen context(s). Impress by overall perspective and clear identification of the measures and their varying effectiveness. [12–15]

L2 Develop a response of sound quality which is good in parts, but which remains limited in perspective, detail and/or the assessment offered. At the lower end may consider effectiveness quite broadly. [7–11]

L1 Make one or more basic observations about environmental protection. Respond quite generally or descriptively, offering little or no assessment. Fragmentary and note-form responses remain in this level. [0–6]

[Total: 25]
4. e) Air pollution is largely caused by industrial manufacturing and electricity producing processes. Factories such as the ones timing Rayong Province of Thailand degrade the quality of the air by expelling byproduct gases from their manufacturing activities into the air. Electricity production in Thailand also relies heavily on coal and fossil fuel burning, which creates excessive carbon dioxide release into the atmosphere.

To an extent, gases released from the exhaust pipes of vehicles also contributes greatly to city air pollution, especially in cities such as Bangkok, where public transportation is not effective and there is a lot of private vehicle use. Vehicle maintenance laws in Thailand is also not very strict and old vehicles with faulty internal catalysts release excessive amounts of carbon dioxide and toxic gases to contribute to air pollution in the city.

The toxic gases released from volcanic eruptions is one of the world’s greatest air pollution effects. Ash clouds can travel across through wind, block the sun, and cause changes in global temperature, as well as affecting weather patterns.
4.15) The marine environments, particularly in the South of Thailand in the Satun Province, is currently at risk due to excessive tourism and irresponsible waste management from manufacturing factories.

Poorly managed tourism causes the beaches of Satun Province to be full of litter and garbage. The sea is also dirty from this and the dumping of industrial waste, often illegally. None of these chemicals are well as change in temperature of sea water. Corals in the area have all suffered from excessive bleaching and is at great threat. Sea turtles, fish in the area are also starting to disappear with some species sometimes only present in captivity and no longer present in the wild. Sea turtle breeding grounds have also been disturbed and destroyed by the use of beaches in tourism, such as setting up restaurants and parking speed boats.

To protect and preserve the area, the Royal Thai Navy, with a base naval base in the area, employs trained experts to study the area, especially to investigate the excessive coral bleaching. Most of the Satun Province are currently closed off from tourists by the navy, and the areas are slowly rejuvenating from the tourism impact.
Examiner comment – grade A

The response to (a) is careful to identify ‘the main sources’ of air pollution and introduces a number of them in a judging and weighing manner. Three human and one natural source are given. The human sources are exemplified from Thailand, but the examples remain quite basic and greater detail or specificity is needed in order to lift this piece into the highest mark band. For (b) the response is high quality and shows the use of an environment from the home country to very good effect. It combines local knowledge and understanding with conceptual insight into the functioning of the ecosystem and environmental management and with effective assessment. What could be a bland judgement by way of a conclusion is clearly appropriate in the circumstances. To move higher up the Level 3 mark band, greater detail (e.g. named locations, events, dates, leaders, attempts, statistics) is needed.

Mark awarded = 20 out of 25
Air pollution is the term given to the human or natural emission of impure substances into the environment. When the air becomes so impure that it hampers or hinders normal human activity, it is said to be polluted. Air pollution occurs due to mainly human factors. Industrial development, vehicle activity and garbage disposal can be causes of air pollution.

One example is that of electricity generation using fossil fuels. The burning of coal to produce electricity in China leads to high levels of sulphur dioxide and carbon dioxide. The smog drifts downwind towards cities too, reducing visibility and leading to breathing problems. Another source of air pollution is that of combustion engines in motor vehicles. The burning of petrol emits high levels of carbon which pollute the air. Smog levels in New York, USA reach new highs due to the large number of vehicles in the city.

A third source could be that of combustion of garbage. As waste is burnt, it emits toxic gases into the environment. Sometimes plastics burn and tallow are also burnt which emit highly toxic gases.
The burning of coal along with bio-fuel for energy emit high levels of methane in the villages of Pakistan and India. Fuelwood may also be used as energy which emits sulphur. Industrial factories also produce pollutants that are then released into the air. Specifically, steel industries produce many gases that are released untreated as catalytic converters are rarely in use. Chlorofluoro carbons or CFC’s are also released along with aerosol sprays and even fridges and air conditioners.

There are several causes of air pollution. One such is the eruption of volcanoes that emit high levels of smoke and ash. For example, last year’s eruption of the volcano in Iceland emitted such huge amounts of ash that air travel was tremendous. Wild fire and forest fires in Russia and Australia also produce toxic smoke as they burn bread.

Air travel is also a large source of air pollution as fuel is used in large amounts.

b) In cases where air pollution reaches unbearable limits, measures have to be taken to save the environment in danger. An example of such measures is the case of the Taj Mahal in India which was severely degraded. Changes due to high carbon levels around the area. When the Taj Mahal’s white marble started...
Effective measures were put in place to protect the national treasure. The area around the tomb was cleared to thoroughfare. High walls were placed to discourage vehicular movement around the tomb. Cycle-driven rickshaws were provided for tourist movement in the vicinity. All these measures reduced carbon emissions around the tomb. Protection was increased so the tomb’s heritage was protected. However, the effectiveness was limited due to certain failures. Firstly, vehicles outside the forbidden area still moved freely and were numerous in number. The emissions from these cars could not be stopped from reaching the structure which may harm the marble. Corruption and lack of political will also cause the rules to be relaxed at times and strict enforcement is overlooked.

Another case is the control of smog. Levels in Istanbul. As times, the smog levels had reached so high that visibility was reduced significantly. The level of carbon dioxide was many times more than the permitted levels. Congestion charges were enforced. These charges placed on extra cars or people attending to travelling through the city centre at peak times. This was done to discourage private car movement. Another method adopted was that of high taxes on car ownership as well as subsidised charges on public transport to encourage public transport. Coal-fired power stations were shut down near the city and industrial firms were required to install catalytic converters.
Examiner comment – grade C

The response to part (a) is similar in character to that of the previous candidate, combining human and natural sources suitably. The exemplar content for the human sources is inadequate. That for the natural sources has some detail and is of better quality. The response to (b) would have been improved by an identification of the environments chosen at the outset as there are at least three, of varying levels of development and detail. Overall the work is strong on ‘the measures taken’ which are covered at some length. The quality of the assessment offered is variable and there is insufficient attention given to what ‘effectiveness’ might mean in these contexts. The last example of the Gulf of Mexico ends abruptly and may be unfinished. Answer quality could be improved by a less ambitious attempt (taking fewer environments); by paying more attention to some of the key ideas in the question, such as ‘at risk’; and by focusing on assessment, as in the Taj Mahal example, rather than taking a more narrative approach.

Mark awarded = 14 out of 25
The main sources of air pollution include industrialisation, vehicles, and urbanisation, CFC and high population density.

Increase in industrialisation is responsible for the most causes of air pollution. They release pollutant gases such as SO₂, CO and CO₂. Industry releases these pollutant gases in their course of functioning or their manufacturing process.

Burning of vehicles' petroleum can release the harmful gases from the exhaust. If there is an increase of the use of vehicles, air pollution will also increase. Urbanisation is the increase in development, hence in development will encourage the necessity of using vehicles as it is part of the everyday increasingly standard of living. Thus the number of vehicles use will raise and raise the air pollution.

Refrigerators, air conditioners and other electrical equipment may contain a group of chlorinated chemicals called chlorofluorocarbons (CFCs). This chemicals is a potent pollutant. If large amount of such equipment use in a small geographical area (urban area), it will produce air pollution which endangers environmental and ecological system.

High population density also can cause air pollution. This is happen when their constant intake of oxygen and release of carbon dioxide will cause a change in the composition of air.
Some of the measures that can be use to protect environments is by the enforcement of law. By doing this, environment can be protected by encouraging to people the behaviour of “take nothing but a photograph, leave nothing but a foot print”. This quote should be display on a sign board such as at recreational parks or archaeological sites. Imposing some amount of fine also can be useful for those that cause a destruction on environments. Thus, rules and regulation need is needed so that people may know what have to do and what should not to do. Accessing permits can be helpful so that it can limit the number of people visiting the area and make the place hard to access. This can less number of people entering the area might unpollut (the natural environments.)

Advertises to through posters, media and distribution of brochures or leaflet to mention to people of the importance of protecting environment also required so people will be more aware and understood the motive of protecting environments. To make people more aware, the awareness program and campaign can be include as a measure to protect environments.

Measures/way urgent awareness

However, there is a limitations to more use of measures of protection. This is because, the enforcement of law is not standardized internationally. Another thing is, different countries have different government priority. Some government will put high priority on military defence, foods or education. Level of education also included as part of the limitations. If the literacy rate of one country is low, it would be difficult for them to understand the importance of protecting environment and they might not able to read what have been mention on the posters.
Examiner comment – grade E

Overall, the candidate shows a general grasp of some basic ideas about the environment; it is the lack of exemplar content in both parts which is the principal limitation on performance. The response to (a) is broad, general and makes a clear attempt to identify ‘main sources’, as required by the question. The inclusion of “high population density” and the effects of breathing were not credited. The candidate may have overlooked the beginning of the question ‘With the help of examples’, or lack such content, for no examples are to be found. In (b), clear attention is paid to ‘measures’ but the approach is inadequate as no environment is identified and there is just the use of the phrase “the natural environments”. Credit is given within Level 1 for the broad understanding of some kinds of measures, such as laws or fines, but the assessment that can be done in the abstract is very limited and not really what the question is about. The answer needs one or more examples of named, located environments as a basis in order to become concrete and real.

Mark awarded = 10 out of 25

Question 5

Global interdependence

Only one question may be answered from this topic.

5 Fig. 3 is a cartoon showing one view of global interdependence.

(a) Describe and explain the relationships between MEDCs and LEDCs in relation to giving and receiving different types of aid. [10]

(b) Consider the view that the costs of receiving aid are far greater than the benefits. [15]

Fig. 3 for Question 5

Global interdependence as seen by one cartoonist
Mark scheme

Global interdependence

5 Fig. 3 is a cartoon showing one view of global interdependence. [10]

(a) Describe and explain the relationships between MEDCs and LEDCs in relation to giving and receiving different types of aid.

An open question allowing candidates to use the material that they have; any forms of aid are acceptable, e.g. relief aid, development aid, tied aid, etc. The relationships are complex and various. Much depends on the examples chosen. Look for specific detail as part of the description and a measure of analysis for the explanation. Aspects of power and influence, history, neo-colonialism, etc. may be pertinent. The cartoon, if referred to, shows South America and Africa pinned to an institution in an MEDC, presumably, by dollars.

Please mark on overall quality, bearing in mind three levels of response and the mark bands 0–4, 5–7 and 8–10. For a general response without examples max. 6.

(b) Consider the view that the costs of receiving aid are far greater than the benefits. [15]

An opportunity to undertake some basic cost/benefit analysis (CBA) and to use the example(s) a candidate has. Costs and benefits may be economic, social, environmental and political; short, medium and long term. The scale may be national, regional, local, communities and individuals. A consideration of dependency is likely.

Candidates will probably:

L3 Develop a high quality response, offering a consideration which is distinguished by its conceptual basis, contemporary knowledge and overall perspective. [12–15]

L2 Provide a response of sound to good quality, which is satisfactory as far as it goes, but which remains underdeveloped in detail, scope or in the consideration given. [7–11]

L1 Make a response which is more a description than a consideration, or which may simply agree with the question. Write broadly or generally about outcomes, rather than CBA. Offer fragments or notes. [0–6]

[Total: 25]
5 a) The most notorious relationship of giving of aid is that it would be of MedCs to LedCs in order to redistribute wealth or offer some sort of help. However aid can take many forms. Multilateral aid is independent world organisation such as the WHO giving large sums directly to LedCs as a genuine gift. Domestic government decide individually how much to give to Miss. Bilateral aid is also known as aid and is the view that the giving of aid is to be repaid, for example if one country gives another many then this has to be spent on these goods or if one country is paying for this scheme it has to contract builder from the donor country. The least 3rd type of aid is emergency aid given by local government and multinational charities. Finally aid can occur from charities where donations are made and given away from political impact. These types of aid will be locked and the relationships of MedCs and LedCs.
in relation to these types of aid.

Multi lateral aid is archetypal and usually direct giving money from donors to MEDCs. However, as the cartoon suggests, this can create an MEDC dependency on MEDCs where the aid has to keep coming and coming.

Tied aid again is usually MEDCs to LEDCs but creates a kind of in debt relationship hindering like democracy where the LEDC is always trying to pay back. A recent example is Australia giving to Indonesia partly still helping from the Tsunami of 2004.

The aid ever gets to Aceh and over 45% of the money gets spent on Australian goods. From 2005 to 2007 over $2 billion was given and the trade relationship is worth over $7 bn. It builds trading partners but it is like debt with conditions attached.

Another example was the Libyan aid given in a damn in 1971. However, Emergencies and doesn't have to follow the MEDC to LEDC relation.
Ship and can occur however there is a natural disaster as seen with Australia with the Queensland floods they received aid from much less economically developed countries. And LEDC's given donate.

More recently as seen in the aid budget USA give large amounts to India and China and an objection is that why are we giving to country's both with space programmes and this has been seen as MEDC giving to an LEDC.

And aid from Charities such as Oxfam go directly from MEDC's to LEDC's.

Adv
- Can provide long term help
- Key after disaster
- Log term is very effective
- Promote incentives

Dissolve
- Dependent
- Died
- Milk economy
- Corruption
- Places it needs, money
- Don't know how to
The question asks whether the benefits that can be achieved from aid outweigh the possible disadvantages. The advantages from aid will be looked at followed by the disadvantages and then see whether the costs at weigh the benefits in the conclusion.

The first advantage of aid is that if it reaches the areas of need it can make a big difference to individuals. It can bring people out of absolute poverty, provide diminishing water and medicine. An example is in Somalia a charity has been set up and money to have lost their sight due to water borne diseases and with a £12 donation some can can have their sight back. Aid can give help to individuals in form of basic amenities to help them care that undeniable help.

The second advantage of aid is that it given in the right way can be a large scale benefit. The phrase from oisof: give a man a fish it will feed him for a day, teach a man how to fish it will feed him for a life time. It can provide people with skills and technology that can make them
rly on themselves and is a long term solution.
And on give people techniques and teaching
that can free them from dependence and
help them produce for themselves for
a long time.

Another advantage of aid is that it can
really help after disasters and help
provide basic communities that couldn't
be present otherwise.

Lastly, it can improve the economy. But
so that in the long term the
aid shouldn't have to be given. For
example, the UN have built up logos
in Nigerias infrastructure of roads and
technology and schools and long term
supply side policies, and in certain
areas the economic productivity has
increased fivefold. However, aid has been seen to outweigh the

The first disadvantage is that it can
encourage dependency on the source country.
For example, if every month a country
receives a lot of food, given then
it provides no incentive to produce
their own food and local production
will cease and the receiver just
becomes so reliant, this is a major problem i) the country does their money out for example due to recession. Aid in some forms can make people and countries very dependent on it in the long term.

A second disadvantage is that the aid given can be tied, meaning the country that receives the aid has limits to re-spend it to the donor. For example, the aid that the Australian government gives to Indonesia under the title of help post 2004 Tsunami; 45% is spent on Australian goods and only 9% reaches Aceh the area it is supposedly intended.

A third disadvantage is that it can really spoil an economy. And countries benefit but in fact be benefiting the MEDCs. An example of this is that in 2004 the EU put a stop to the EU buying all domestically produced sugar for a much higher price, all the surplus. They put a 150% import tax on sugar. And then dumped it all in the form of ‘aid’.
in LEDC countries. This is then sold for an extremely low price or given away. This to the MEDC seems great giving away as a gift but on a small scale it seems farmers who are producing sugarcane in the LEDC are being forced out of business destroying their income.

A fourth disadvantage is that aid can offer corruption and the reciever government claims it is going somewhere when actually it is going to politicians, government officials and others not those people in absolute poverty who really need it.

Main on from this the places that really need it never get it. For example Burkina Faso in 126th out of 175 in the level of poverty but doesn't receive anywhere as much aid as some countries due to not having favourable political ties or nothing to offer back in the form of goods and work.

The last disadvantage of aid is that it is often given in the form of technology but there is real problems with this because the locals either can't afford to run the technology and or
Examiner comment – grade A

Although the question asks about ‘relationships between MEDCs and LEDCs’, the way in which the response is written suggests that the candidate has taken the last phrase, ‘different types of aid’, as the organising principle. It proceeds from one form of aid to another, showing understanding of each, but the relationships remain broad and general and are mainly about the direction of aid flows. It is good to see a reference to the cartoon in Fig. 3, but the attempt is unconvincing in the interpretation given. Although the work starts generally a number of recent examples of giving and receiving aid are included. The connections to debt and to trade are, in this context, acceptable. Response quality could be enhanced by some sort of overview, by close observation of, and reflection on, the cartoon and/or by some development of the nature of the relationships, for example in relation to colonial ties or strategic priorities in aid budgets. The high quality response to (b) is a true consideration and shows skills in cost/benefit analysis (CBA).

It is simply and effectively structured and moves from the general point to exemplar support with ease in several places. Most of the response consists of developed advantages and disadvantages, one per paragraph, some of which are very good. The concluding paragraph offers an overall assessment which could be expanded on for further credit. Higher awards in Level 3 could be given for an integrated and weighing approach to assessment; fuller detail, perhaps developing example and counter-example; or by deconstructing the idea of a ‘view’, maybe considering other perspectives and whose they are.

Mark awarded = 19 out of 25
The relationship between MEPCs and LEPCs in relation to giving and receiving different types of aid.

The more economically developed countries help the less economically developed countries by giving them two types of aid:

Bilateral – is when the richer nation provide loans to the poorer nations in exchange that the poor nation would buy it is goods manufactured good and services e.g., Kenya is loaned money by the Chinese government in exchange the cost of build the Kenyan roads by the Chinese government would be cheaper than any other MEPC willing to give the roads in the country.

The Multi-level aid – It’s when the richer nations give the money to NGOs or UN in order to help the poorer nations in order to fix up something in their countries. The EU donates money to the World Bank or its SB summit provides the money to the World Bank and then which nations require it’s aid to the most.

Voluntary Aid - Comes in when a country isn’t able to sustain or recover from an event e.g., Haiti. LEPC countries was voluntary aided by the most of the countries in the world because the country was capable of recovering by its own. This was from the Haiti 2010 earthquake which also destroyed the city.

Also MEPC is e.g., Japan was hit by an earthquake Q.0 on March 11 2011 and also a tsunami that impact
The cost of receiving aid are far greater than the benefits. Receiving aid would help the countries that are in need to recover back to in that is a country has been hit with an earthquake or a natural hazard with them receiving the amount of aid it would lift them higher than before or in the case it with the receiving aid it would create more jobs in the service sectors and also improve infrastructures to help minimise the damages that wouldn’t be implemented if another natural hazard was to occur. It would also increase the economy of the area. Receiving aid would be more supportive in course in that the country that is being aided would get payback all there is to do it’s just able to recover and continue to trade their goods and services to the rest of the world. The receiving aid also makes it gain in for both countries e.g. help roads are made at a lower prices then any other MEDC would offer in because were buying goods and services from China in return also with the multilateral aid ALGO being given money to support the poor nations in fact the countries are receiving aid from ALGO’s and support through oth other connections that would benefit have positive impacts to the receiving countries. The benefit of aid is that to what extent one the countries going to be receiving the aid the governments benefit in that they don’t lose their income to support
Examiner comment – grade E

The response to (a) is of the right intention, but remains partial. The candidate identifies that there are two types of aid, but then appears to write about three (bilateral, multilateral and voluntary). There is some awareness of recent events shown, such as in Haiti. Not all the ideas advanced about aid are firm. The relationships in the question are described mainly in terms of connections and direction of aid flows. The response to (b) is relatively brief. It is a similar length to that for (a) even though the mark allocation is substantially more. Rather than following the command word and offering a consideration of the view given, the candidate seems to accept the view – in the first sentence – and then try to explain it and support it. This is encapsulated in the Level 1 descriptors. The positive emphasis, on benefits, makes for an inadequate approach to a much broader issue and the writing is general except for the mention of China. The quality of the response would be enhanced by the inclusion of costs and so greater balance; an evaluative rather than an explanatory approach; and specific exemplar content.

Mark awarded = 10 out of 25
Question 6

(a) (i) Describe how the character of a tourist area or resort may change between the stages of 'development' and 'stagnation'. [4]

(ii) With reference to examples you have studied, outline the factors that may influence whether a tourist area or resort experiences 'rejuvenation' or 'decline'. [6]

(b) To what extent is it inevitable that ecotourism will eventually lead to the same problems as conventional tourism? [15]
6 Fig. 2 shows the tourism life cycle model.

(a) (i) Describe how the character of a tourist area or resort may change between the stages of ‘development’ and ‘stagnation’. [4]

Familiarity with Butler’s model will allow description of the changes that are likely to occur between the named stages. ‘Development’ describes the point when mass tourism takes off, so the resort will be busy, successful businesses may encourage a ‘spread effect’, foreign travel companies/external organisations may dominate. There is conflict between locals and tourist, possibly, as traditional activities are threatened. New buildings continue to be built. Consolidation follows in the upward curve. By contrast, ‘stagnation’ sees the resort as no longer fashionable, the buildings/facilities become rundown as visitor numbers have peaked. Some buildings are not completed, businesses close, etc.

(ii) With reference to examples you have studied, outline the factors that may influence whether a tourist area experiences ‘rejuvenation’ or ‘decline’. [6]

Credit understanding of the two outcomes ‘rejuvenation’ and ‘decline’. Sometimes an element of decline is reached before intervention takes place. For example in the case of some Mediterranean resorts, visitor numbers tailed off, infrastructure deteriorated, reputation fell and environmental image diminished. The factors that influence whether this is turned around would be government intervention – at either a national or regional level and local business climate/entrepreneurs. Credit the use of examples and conceptual understanding of the two stages. For a theoretical response without examples, max. 4.

(b) To what extent is it inevitable that ecotourism will eventually lead to the same problems as conventional tourism? [15]

An opportunity to consider the role that ecotourism may play in the future of a sustainable global tourist industry. Look for understanding of the meaning of ecotourism and recognition that there are problems associated with it (economic, social, environmental, political). The words ‘inevitable’ and ‘eventually’ are open to interpretation by the candidate.

Candidates will probably:

L3 Offer a strong, overall assessment of the character of ecotourism, linked to conventional tourism in an evaluation of its outcomes real or potential. Example detail is used to enhance the evaluation in a response which impresses by its perspective. [12–15]

L2 Make a sound attempt to evaluate the impact of ecotourism which may be good in parts. Discuss some of the problems of conventional tourism and relate them to ecotourism. Respond appropriately, but with limitations in exemplar detail, structure and/or understanding. [7–11]

L1 Give a few basic points, maybe describing some aspects of ecotourism or conventional tourism. May write generally, lacking a focus on the question and offering little or no assessment. [0–6]

[Total: 25]
A tourist area may find itself increasing in size and capacity to cater for more tourists during the development stage of the butler model. This may be because the area is becoming more popular and vibrant and the want to visit the area may be increasing. So the tourist area may become more upmarket, raise its prices, increase advertising and improve its facilities. However, the stagnation may occur as a result of a change in consumer tastes, too high a price hike or just better competition elsewhere. The character of the area may become a little run-down as the area becomes harder to maintain due to a lack of income. In order to save costs, certain facilities such as vending machines, pool tables may be closed down or sold. The overall area may begin to look old-fashioned, not up with the times, and a little boring.

ii) The main reason depicting a tourist area 'rejuvenation' or 'decline' comes mainly down to motivation. For example, Majorca in Spain is now entering the 'rejuvenation' stage because they've branched out and aimed at another form of tourism known as 'Agricultural Tourism'. These people come to view majestic apple and orange orchards, go fruit picking or even on farm and family picnics to see how the locals originally lived. The increase of tourists to the area once more than has to do with increased advertising, aiming at a different era and class. Furthermore, the will and ability to put large sums of money to good use to knock down old run-down buildings and create green, eco-friendly spaces.
make the region more aesthetically pleasing to tourists too, making them want to return.

However, decline can occur for a number of reasons too. For example, the Tengah Blue Coral Beach Resort on Lang Tengah Island, Malaysia, declined dramatically and eventually shut in late 2005. Whilst it had been buzzing with tourists during the summer of 2001–2003, the resort’s owners got complacent. The beach house became run-down, there was no variation in the food and the place was left untidy: no cafe, grass, unclean pool etc. This, combined with the opening of a brand new 5-star hotel over the other side of the island, was the deciding factor and the resort closed. However, if attempts to refurbish and heavily promote the resort once more, a long with intuition such as package deals and cheap prices, the once bustling location could have once again reached former glories.

\[\text{Eco-tourism is a modern-day form of tourism appealing to a more contemporary type of tourist - with the aim of educating and reducing our impact on the land. By giving back to and working within the environment the damage is less impact.} \]

This form of tourism has only recently been getting
extremely popular, within the last 10 years. Due to
a growing consensus from contemporary consumer tastes
to something beneficial and lower thrill, more tourists are visiting areas such as Sarawak, Malaysia with the
intention of providing for our future.

I do not believe that the majority of eco-tourism will eventually end up like conventional tourism for several reasons. Firstly, the type of people that this form of tourism is aimed at are not conventional. They are not looking to get drunk and party over the weekends like much of the Western world’s youth. These people are often couples or families that want something more relaxing and that provides a greater benefit. This means that such an area won’t experience noise pollution, litter or even crime because the nature of the people embarking on eco-tourism are very different. You choose this form to avoid all that and reduce such impacts. For example, during forest tours in Sarawak you’re constantly reminded to remain quiet and ‘take
nothing but photographs and leave nothing but footprints’ because these companies pride themselves on aiding the eco-system, on benefiting it.

Furthermore, that conventional tourism is very large scale and eco-tourism will never become like this. It will become popular but there will never be 1,000
of people on one tour because that’s not aimed at catering for that. It’s intention is low impact benefit. More people means more management and this alone is
harder.

However, in the long-term some things may begin.
Examiner comment – grade A

In both sub-parts of (a) the candidate demonstrates good understanding of the tourism life cycle model. In (i) a little time and effort is wasted giving reasons for the changes, when the command word is ‘Describe’ and no mention is made of consolidation, but the focus on ‘character’ is firm. In (ii) there is an admirable attempt to identify ‘factors’, such as “motivation”, but it could be made explicit who is involved in rejuvenation, such as national government, local planners or entrepreneurs in the tourism sector. The candidate uses good detailed contrasting examples. The response to (b) is well-written and presents and develops a personal perspective, addressing both timescale and spatial scale. There is good varied exemplar content about ecotourism and a management perspective is apparent, but overall the writing lacks the detailed content about conventional tourism to move higher in Level 3. More could be made of the content about its problems which is embedded in the coverage of ecotourism.

Mark awarded = 20 out of 25
Example candidate response – grade C

6(a) In the stage of development, there has been already increasing number of tourists to the tourist destination forming the major part of the local economy. There is little investments in the economy and the tourists destinations are known to tourists. Next stage will be consolidation where the number of tourist will start to level off and second class infrastructure is seen. At the stagnation stage, the tourist destination has reached its peak and is about to rejuvenate or decline. If steps are taken to improve the destination from the stagnation stage, it will lead to a rejuvenation while if nothing is done from this stage, otherwise happens, leading to decline. 1/0

6(a) Kenya can be one tourist area that has gone through all the stages of the life cycle - exploration, involvement, development, consolidation, stagnation and finally decline. Kenya sells itself as a wildlife and safari type of tourism. This tourism largely depends on the wildlife animals which needs to be carefully preserved and conserved. Increasing number of tourists has one of brought about the decline in Kenya. Topsoil erosion has occurred and animals fear from constant large groups of tourists. This has caused them to not mate and neglects their young. This leads to extinction of some endangered species in the wildlife ecosystem which does not attract tourists anymore. Also, the tour guide drivers are expecting tips from the tourists by driving really close to the animals. Exploitation of such towards tourists has caused tourists to turn away from Kenya.
Malaysia on the other hand experiences rejuvenation in the tourist industry after the crisis in 1997 and 1998 due to its diversified culture and heritage sites. For instance, Penang is one of the world heritage sites under the UNESCO World Heritage. Achieving this status has brought influx of tourists. With its diversified culture as a result of multi-racial community, tourists are able to experience celebrations of different races in certain time of the year. Penang also sell itself as a food junction where it serves gastronomical delights. With transport system and network, international flights coming in has brought a lot of tourists to land themselves there. The tagline 'Malaysia Truly Asia' hence stands and proud pride itself as a country with various culture, heritage and traditions.

(c) Ecotourism a form of sustainable tourism are in search of balance between the ecological system, biodiversity and the economic system of the country.

Ecotourism first of all limits and sets certain rule to the tourist destination. For example, in Ban Don Bay Thailand, they have come up with zonation for tourists to visit. The sanctuary zone is strictly prohibited, conservation zone is allowed but without plastic bottles being carried and the general use zone where it is permitted for all. Regardless of these strict rules, the coral reefs in Ban Don Bay has still manage to attract tourists to Thailand causing further footpath erosion on the coral reefs. It is rather sad as it creates the same
problem to conventional tourism, only that it allows
down the process of footpath erosion from occurring.

Increased ecotourism also limit the number of which
tourist that can visit the place. This nevertheless still
courages tourism. Once there has been an activity for
tourism, accommodation and infrastructure need to be
provided for the tourists. Still, land is being cleared
for the construction of hotels, pools and entertainment
centre. The construction of these buildings inevitably
increases the erosion of soil if ecotourism were to
be closed to a flora ecosystem such as in the
Sarawak, orang utan jungle. Water table under the soil
also being affected with construction of pools. This can
be seen in Goa, where tourism has gone wrong,
There have been no clean water for the people, and they
are only subjected to two hour of usage of water
each day.

Ecotourism and conventional tourism both causes negative
economic impact to the country. There will still be
leakage, regardless of whether import or export leakage.
Most of the ecotourism destinations are in the
developing countries, where they are not able to provide
sufficient capital to cater for ecotourism, internationally.
Transnational or multinational cooperations are the ones
investing in the economy of the country, whether it
is ecotourism or conventional tourism. In Thailand, there
has been a 70% leakage in the economy, from
Examiner comment – grade C

The description in (a)(i) appears to be derived largely from Fig. 2 with the exception of a few ideas such as “second class infrastructure”. As such ‘character’ is insufficiently developed. The response is also broader than the question in that it continues beyond stagnation, so the last five lines are irrelevant. In (ii) the candidate takes Kenya for decline, but the selection of material is not disciplined and the ‘factors’ for which the question asks are rather limited. The example of Malaysia is taken for rejuvenation and is rather better done, although, again, the factors could be pointed up to good effect. For (b), the candidate shows knowledge of both ecotourism and conventional tourism and develops some useful ideas. The quality would be enhanced by an attempt to get at the idea of inevitability in the question; and/or by further specific examples. What is found about Ban Don Bay in Thailand is exactly what is needed; more could be made of the content about Sarawak and Goa. The conclusion is personal, rather bleak and, perhaps, not fully justifiable.

Mark awarded = 14 out of 25

Example candidate response – grade E

Examiner comment – grade C

The description in (a)(i) appears to be derived largely from Fig. 2 with the exception of a few ideas such as “second class infrastructure”. As such ‘character’ is insufficiently developed. The response is also broader than the question in that it continues beyond stagnation, so the last five lines are irrelevant. In (ii) the candidate takes Kenya for decline, but the selection of material is not disciplined and the ‘factors’ for which the question asks are rather limited. The example of Malaysia is taken for rejuvenation and is rather better done, although, again, the factors could be pointed up to good effect. For (b), the candidate shows knowledge of both ecotourism and conventional tourism and develops some useful ideas. The quality would be enhanced by an attempt to get at the idea of inevitability in the question; and/or by further specific examples. What is found about Ban Don Bay in Thailand is exactly what is needed; more could be made of the content about Sarawak and Goa. The conclusion is personal, rather bleak and, perhaps, not fully justifiable.

Mark awarded = 14 out of 25

Example candidate response – grade E
Examiner comment – grade E

This is a brief attempt at the question, especially in part (b) given the mark allocation and time available. Some grasp of the model is shown in (a). For (i) stagnation is the strongest element, but character is little explored. In (ii), poor expression and an uncertain example obscure the response and the examiner is left to identify the factors within what is written. The approach to (b) is brief and general, based around the concept of carrying capacity and the balance between resources and population. There is some understanding shown of environmental disturbance and of tourism-related crime, but unless the context is taken to be implicitly that of the candidate’s home country, it reads as being unlocated and broad. In order to gain more marks, attention needs to be given to examples of what the problems of conventional tourism are and whether these are found already now or will ever be found in relation to examples of ecotourism. This would need developing at rather great length than is offered here.

Mark awarded = 10 out of 25
Question 7

Economic transition

Only one question may be answered from this topic.

7 (a) (i) Give the meaning of the term *foreign direct investment* and explain how it occurs. [5]

(ii) With the help of an example, explain the meaning of the term *new international division of labour (NIDL).* [5]

(b) To what extent do you agree that globalisation creates more winners than losers? [15]
Economic transition

7 (a) (i) Give the meaning of the term foreign direct investment and explain how it occurs. [5]

Foreign direct investment (FDI) is investment made to serve the business interests of the investor in a company in a different country from the investor's country. Classically, it involves a business and its foreign affiliate within a TNC and some element of interest and/or control.

FDI may be inward (received) or outward (given/made). Different types may be identified, such as greenfield FDI (investment in new plant or facilities when starting up), or mergers, which accounts for most FDI, enabling a TNC to expand. Mark holistically (definition/explanation), for one, max. 4.

(ii) With the help of an example, explain the meaning of the term new international division of labour (NIDL). [5]

A good explanation encompasses all the words and ideas here: new it emerged recently associated with globalisation international across countries in the global production network division of labour work is split up into tasks/functions for efficiency. The example is preferably named and located, but may be generic. Mark holistically on quality (example/meaning of the term).

(b) To what extent do you agree that globalisation creates more winners than losers? [15]

The key to the question is uneven development within the world economy. Candidates are free to develop their own approach and to interpret “winners and losers” at any scale. It is possible to argue that MEDCs (home to the majority of TNCs) win; that NICs also win (some more than others); that people who gain jobs and income win, etc. Those who may be seen as losing include workers in MEDCs where factories close; workers in LEDCs where hours are long, wages low, health and safety poor, etc; and those who suffer collaterally from environmental pollution, family breakdown, or from TNCs’ relocation in search of the next low-cost location. Answer quality may be judged on overall argument, use of evidence and contemporary perspective.

Candidates will probably:

L3 Offer a convincing assessment, addressing the question directly and providing an effective argument supported by detailed evidence from different locations. [12–15]

L2 Provide a response which has a “satisfactory so far” quality to it, and which may contain good elements. The response may be unbalanced (focused on either winners or losers), or top and tail a narrative about globalisation with evaluative comments. [7–11]

L1 Make one or more simple statements about globalisation, but lack the material, conceptual framework to make more than a basic response. Notes and fragments remain in this level. [0–6]

[Total: 25]
Foreign direct investment is the money that is invested by foreign firms into a country. These investments may be physical things, for example factories, buildings, roads and infrastructure. They occur because of a variety of reasons. First of all, it may be because of the large and good potential market, such as Brazil and China, and the foreign firms are looking to make more revenues and expand their market. Secondly, the local government may offer the foreign firms tax breaks, and so the firms invest there. Finally foreign firms may also be attracted by the cheap costs of production there and so reallocate their factories in order to benefit from the economies of scale.

New international division of labour (NIDL) is the reallocation of factories, industrial plants from traditional MEDEs to LEDCs. It is a shift of the production line where the manufacturing process that requires low skill and training is now located to LEDCs where the costs of the factors of production is relatively cheap. The MEDEs is now transformed into a more service based (teaching sector) or where IT, research & development (software sector) is now focused. An example of this is the company that produces ‘bag-less’ vacuum cleaners – Dyson. In 2002, it
has shifted its major manufacturing plant from the United Kingdom to Malaysia. The average salary in the UK is £9 an hour whereas in Malaysia, it is only £3 an hour. The yearly office rent is up to £114 per square metre and in Malaysia, it's only £88 per square metre.

As developing countries develop, there are a number of factors that may cause a company to move production to these countries. These factors include a lower cost of living for workers, cheaper rent, and lower cost of production. One of the winners are multinational companies (MNCs). Because of the new international division of labour (IDOL), these foreign firms are now allowed to reallocate their factories and manufacturing plants into less economically developed countries. Globalisation has allowed this because of the cheaper communication and transportation costs. The low costs of production has allowed the firms to reduce their average costs. The large potential markets such as Brazil and China has allowed them to expand their market rapidly and hence increase their profits. Two main reasons enabled the MNCs to achieve economies of scale which have benefited them massively. One of the other winners are the workers in the LEDCs. Initially, they were paid much through their subsistence farming and seasonal jobs. But now the...
MNCs have provided them with a job that has stable income. MNCs also provide training courses to enhance their productivity and skills. However, it may be argued that MNCs are exploiting on these cheap workers, and that they will only be able to do the low-skilled jobs because the managers and bosses in and so they don’t have a chance to promote.

Secondly, one of the other major winners are the consumers. Because of globalization, they are now available to a wider choice of products that are potentially cheaper. They could choose between products which encourage competition from firms wanting to win more market share. This sparks off innovation, R&D so that better products and improved services are available.

One of the losers, however, are the semi-skilled workers in the MEDCs, they are now unemployed, because their original manufacturing job has now gone to LEDCs because of the NIPL. It may be difficult for them to find other jobs because they are semi-skilled and have little education.

In addition, one of the other losers may be the environment. It is possible that LEDCs have less strict legislation on pollution levels, therefore MNCs are able to exploit on that and release as much carbon dioxide, sulphur dioxide as they want, thus contributing to global warming.

(In conclusion,) I believe that globalization has created more winners than losers. We are all benefiting from the low cost of communication, transportation, instant updated news and huge advances in technology. We are also now more aware of the culture in different countries and their traditional values.
Examiner comment – grade A

The response to (a) is of high quality. The good definition in (a)(i) is especially clear in the explanation of how FDI occurs. This is both concise and strong conceptually. The explanation in (ii) is similarly accomplished and uses the chosen example skilfully with well-selected detail on comparative costs. The response could be enhanced by a little more content about other functions within the division of labour or by a little elucidation in relation to the ‘new’ of the term. The assessment offered in (b) is of Level 3 quality in terms of argument, the balance of the approach taken and conceptual understanding displayed. It is a rare and perceptive observation, for example, to cite the environment as one of the losers. The quality of the response would be improved by pertinent exemplar content to support and advance the general points made; the lack of place-specific or named content (such as particular TNCs) being its major limitation.

Mark awarded = 20 out of 25

Example candidate response – grade D

7. a) Foreign direct investment is the process of a firm investing into another country to expand its business. For example, STMicroelectronics invested into Singapore to create a new factory there. This is FDI because a firm was present or started up there in Singapore, invested in it, etc. They invested in a foreign country. They will have bought a site and paid local firms to build a factory there, thus expanding themselves through FDI. So FDI is when a firm based in one country invests and moves part of itself into another.

ii) The international division of labour is idea that the world’s labour is divided up and different areas perform different things. The new IOL is the current make-up of the world’s labour. Three countries like Africa who are mainly into primary activities eg. farming, consist mainly of labour working in the primary industry. Countries such as Taiwan are mainly manufacturing and countries like the UK’s division of labour is generally in the service sector e.g. banking, lawyers etc.
Globalisation is the idea of a greater integration of trade and dependency between countries. Over the last 100 years, it has evolved and really been held in society by mainly due to transport and communications. However, the real benefits only really come to those who trade and so for those who don’t it is only to lose out.

Through the advent of containerisation, it is now 30% of the cost in 1950 to transport goods around the world. The result is countries like China and India, who manufacture large amounts of goods are being able to reap the rewards by trading with other countries. TNC’s (transnational corporations) are also able to exist since communications and cheap transport allows different stages of production to be outsourced to those countries with a comparative advantage, lowering unit costs. Sr Microelectronics went to Singapore for example to take advantage of cheap labour to produce its goods. It employed 50,000 people, thus helping local economy overall through the multiplier effect.

The increase in trade doesn’t help everyone though. The EU for example acknowledges that cheap foreign imports cause concern to domestic producers so can while having free trade within it those who want to export to it have to incur tariffs and duties making them less competitive. The reality then is that countries out of it will suffer relative to those in it. The WTO tries to encourage free trade and has helped those suffering because of trade blocs. Economically then, globalisation doesn’t help those who trade but means that domestic producers can get undercut if protectionist measures aren’t implemented.

Socially there are also implications. Because of globalisation, TNC’s have got bigger and bigger and thus more powerful meaning weak countries can be exploited. Be beers for example in the
World's largest diamond producer. It went into Botswana to mine their diamond reserves. Because of the cost of capital to mine them, Botswana couldn't afford to do it. The beer came into the country, used their own labour, didn't implement any infrastructure and then left. There had been no improvement to the country and very little paid to the govt. In this instance then, socially Botswana lost out. And it is the same around the world. Globalisation has made companies 'footloose'. The idea is they have no incentive to stay in a country so if wages go up or another country offers them better conditions, this can be detrimental for a country or an area. Samsung for example came to the UK in the early 1990s. They employed several thousand but soon decided they wanted to go somewhere else, making those people redundant and leaving a hard looking factory behind. It has also led to the demise of industries like the UK clothing and coal industries. Other countries can do it more cheaply and so firms move there to do it. So although in most circumstances it provides more increased employment opportunities, it can have negative social implications.

There are also environmental problems. As firms try to maximise production they may cause damaging effects on the environment such as over-intensive farming or increased pollution from factories. Although perhaps not an obvious issues of globalisation it is certainly present.

And finally politically there can be issues. There can be political disagreements present as a side effect of globalisation. For example there is pressure on the western world to provide aid in developing countries. Because of the ease of transport and large amounts of produce often make surpluses of goods will be sent to the developing world. Therefore grain may go there on the intention of supplying food but actually it floods the market, driving down the price and hindering local businesses.
Examiner comment – grade D

This uneven response is thin and brief in (a). The approach to (b) is direct, more fully developed and of a more suitable length at this level and for the mark allocation. This response is slightly better quality than a typical grade E, but is included for what it demonstrates. For (a)(i) FDI is understood although the explanation is narrow. One reason it may be restricted is that it takes an example when actually it is in (ii) that this is asked for. By contrast, understanding in (ii) is less firm and the explanation advanced is simplistic and inadequate, being at the scale of sectors and countries within the global economy rather than the global production network of TNCs. The candidate uses their own term (IDOL), loosely, rather than the one given (NIDL). The response to (b) begins about trade but then broadens to cover other aspects of globalisation. It shows some appreciation of different dimensions (social, economic, environmental, political) yet the environmental content is about ‘problems’, which diverges from the question, and is brief and general. There is a sense in which the candidate seems to be struggling to use the question’s categories ‘winners’ and ‘losers’ and to apply knowledge and understanding of globalisation in the manner it demands.

Mark awarded = 11 out of 25

Question 8

8 (a) Fig. 3 shows income poverty in Vietnam, an LEDC in Asia, by province, in 2008.

(i) Describe the spatial inequalities in income poverty in Vietnam shown in Fig. 3. [5]

(ii) Explain the limitations of the index and the mapping in Fig. 3 for studying spatial inequalities. [5]

(b) Assess why regional disparities within a country or countries are difficult to overcome. [15]
Fig. 3 for Question 8

Income poverty* in Vietnam, by province, 2008

Key
Income poverty (percentage of adult population)
- 60–100%
- 45–59%
- 25–44%
- 0–24%

* Income poverty means the percentage of adults who cannot afford the recommended minimum daily amount of food.
8 (a) Fig. 3 shows income poverty in Vietnam, an LEDC in Asia, by province, in 2008.

(i) Describe the spatial inequalities in income poverty in Vietnam shown in Fig. 3. [5]

Clearest that income poverty is lowest (0–24%) in the south/SE provinces, a value found only in two isolated provinces elsewhere in Vietnam. There is no simple south–north pattern, as low levels (25–44%) occur in the NE and elsewhere. The highest levels (>60%) are found only in provinces in the north. High incidence of high values (45–59%) but no simple pattern, with clusters seen, e.g. in NW and centrally. Mark on overall quality and data support.

(ii) Explain the limitations of the index and the mapping in Fig. 3 for studying spatial inequalities. [5]

Index: ideas might include, the lack of $ values, % data, the difficulty in subsistence economies where the informal sector is important in determining poverty. No gender-specific data. Credit any valid ideas 3/2.

Mapping: areal units (provinces) hide local variations, e.g. rural/urban. Map is dated (2008). Much background information not shown, e.g. relief or economic activity. Classes are very broad (e.g. 60–100%), etc. Credit 2/3.

(b) Assess why regional disparities within a country or countries are difficult to overcome.

Regional disparities are the differences in levels of development between regions. Many governments intervene attempting to reduce these gaps, by enhancing the development of peripheral regions and/or by limiting development of the core. There are many reasons why disparities are difficult to overcome including cost, scale, the attraction and dominance of the core, harsh environments, regional economies, remoteness, political interests, inertia, etc.

Candidates will probably:

L3 Develop an effective assessment of the difficulty of reducing disparities in the chosen country/countries. Found the response on detailed evidence and show strong conceptual understanding of development. [12–15]

L2 Produce a sound response which lacks full development, but which may contain good elements. May approach the topic broadly, or ‘top and tail’ a narrative piece with some assessment. [7–11]

L1 Make a descriptive response and offer little or no effective assessment. Write loosely or quite generally about regional development. Show faulty understanding of regional disparities. Offer notes or fragments. [0–6]

[Total: 25]
Example candidate response – grade A

(a) 1. 60% to 100% children in northwestern and north can’t afford minimum daily amount of food.
 45% - 59% people in middle between south and north and 3 provinces in north live under minimum daily amount of food.
 25% - 44% adult in northeastern, middle north, southeastern can’t afford minimum daily amount of food.
 only 10-20% adult in all provinces in north, one in middle and 6 in south-west of Vietnam can’t afford the recommended minimum daily amount of food.
 Overall, north Vietnam is poorer than south Vietnam, according to income poverty index.

(ii) Spatial inequalities is not only depend on economic activity but also on resources own, education, social factors.
 Income poverty is only one index in economic activity. More kinds of index need to be showed; for example, GDP for different provinces, PPP for different provinces.
 For resource parts, map should indicate areas which have different kinds of resources (e.g. coal, natural gas etc.)
 Social factors should also be showed like HDI, literacy rate and male/female ratio.

If combine all index above, the studying of spatial inequalities will be more accurate.
China development face huge regional disparities in east China and west of China.

The main cause of the regional disparities is because of physical factors. In the west of China, Tibet region, plenty with average sea level, lack of resources due to climatic condition. And population is small too. However, in eastern China landscape is flat, many rivers across. Coast line is long. As a result, 80% of industry, activity, 80% of port transportation and 90% of foreign investment happen in east China.

In order to solve these inequalities, Chinese government set different policy to solve it. The major one is called ‘development west’. In order to develop transportation, transport goods and services between east and west, Chinese government build Qing-Zang Railway which is the highest railway in the world. Every year, 3 million people go to west China through the railway. West China has many natural gases and oil, so gas pipers build from west to east. This provide job opportunities for local people. Geothermal energy is also full their and Chinese government has a project called ‘west electricity send to east’. Despite economic and resource factors, government try to help the western people through more social factors. For example, in rural areas don’t need to pay tuition fee after 2008. This can encourage children to go to school. More schools or technical schools are built in west region to develop education there. Free medical care in isolated mountain regions are also included in the project. Chinese government also encourage companies in developed region set branches in west of China or hire more local workers to urban area. These people can work in toy, cloth factories. Their standard of living increase as they make more money. West China area but domestic tourism increase.

Although these policies seem to be good enough to overcome
Examiner comment – grade A

The approach taken in (a)(i) to describing the spatial inequalities in Fig. 3 is only partly successful in that, by taking each class of the key in turn, the sense of spatial variation is limited and the final sentence only identifies one element of an overview. In (ii) expression is moderate and some low level reference is made to both the index and the mapping. Greater coherence and fuller explanation of these ideas and others would be needed for higher reward. By contrast, the response to (b) using the familiar example of China, is good quality. It takes the broad east/west disparity as the context and first looks at policy and initiatives. However, rather than ending there, it pursues the assessment in a long paragraph of evaluation, taking a number of reasons why the stated disparity is indeed ‘difficult to overcome’. At a number of points some specific exemplar support for the good quality observations made would drive the achievement still higher in Level 3. The aggregate quality of the answer is at the grade A border.

Mark awarded = 17 out of 25
Example candidate response – grade C

(a) Income poverty is much serious in Northern provinces, which is near to the boundary of China. More (half or more than half) of adult population suffer income poverty. On the contrary, income poverty in Southern provinces are much less serious, (less than half) or even less than a quarter of adult population suffer income poverty. In fact, income poverty is much serious in interior province compared with coastal province. Usually coastal province suffer less income poverty.

(aii) First of all, we don’t know the exact amount of people who are suffering income poverty. In Fig 3, it only shows the percentage rate of people who suffer income poverty. The real number may be more in Southern provinces since population in Southern provinces are larger than Northern provinces.

In fact, income poverty only count adults who cannot afford the certain amount of food. It doesn’t count other essential element of living such
as housing, medical care, education, and so on. It cannot fully reveal the situation in Vietnam.

Furthermore, Fig 3 is using province base, it can only roughly showing the spatial inequalities in Vietnam. However, we don't know the income poverty in a village, or a resident, or The scale of Fig 3 is too large to reveal the situation in each province.

Moreover, the map cannot show the standard of living, that means the quality of living in Vietnam, Fig 3 only shows the people who earn lower than the recommended minimum daily amount of food. It cannot show the overall standard of living in Vietnam.
Regional disparities are difficult to overcome, especially in less developed countries. There are physical reasons, but the most important reasons are the human reasons.

First of all, basic infrastructure is one of the major reasons why regional disparities are difficult to overcome. Due to different accessibility, there will be differences while these regions develop their own economy. Take Vietnam as an example, Vietnam is a former French colony. In the past, French first occupied Southern part of Vietnam and develop major basic infrastructure in the South. The CBD or financial centre is in the South. When there is better basic infrastructure, there will be rapid growth of economic development, hence the income poverty is lower than North. In contrast, Northern provinces, especially near to the boundary are remote area. It is relatively difficult to develop.

In fact, education level in different regions will also affect regional disparities. If the education level in a certain area increases, the income poverty will usually
decrease. Due to the fact that high level of education will increase income level. "Take China as an example, income poverty in China is less serious in east coastal province, compared with interior province. in China. As the general education level in East Coastal province is much higher than people on the west. It is still hard to overcome Education takes time to change. Moreover, government policy is another reason that regional disparities may exist. Some countries in 1960s, government Hong Kong government decided to propose a new town development scheme in order to release population pressure in city centre. Government build various industrial estate like Tai Po Industrial Estate to attract low income class to move to new territories. As a result, income level also government provide public housing for them to improve their living environment. As a result, general income level in
Examiner comment – grade C

The interpretation of Fig. 3 in (a)(ii) is rather loose, in that it overstates the variation and omits data. By contrast, (ii) is done well and considers both the nature of the index and the nature of the mapping with some insight into both spatial inequality and the techniques. A little further attention to one or the other could bring it to full marks as the candidate evidently understands what is required. The response to (b) is lengthy but of moderate quality. Its tone is more that of an explanation than that of an assessment in that it tends to state why. The link made to (a), income poverty and Vietnam is acceptable but unexpected, given that for most candidates Vietnam is likely to be an unfamiliar context. The inclusion of material internal to Hong Kong needs care but the New Territories are acceptable as an example of regional development, whereas the content within the city of Sydney is not. The candidate identifies four factors which relate to difficulties, but the writing is incoherent and the continued emphasis on income poverty restrictive.

Mark awarded = 13 out of 25
Example candidate response – grade E

5. a. The income poverty of 60-100% is mainly in the peripheral areas of Vietnam, with 6 in the North. The least income poverty of 25-49% and 0-24% are in the Centre of Vietnam that is in the core regions.

If this gives an examination that in the core area, there is development. The people living are more wealthy. Therefore, businesses, industries are existing. Hence, goods are higher. So, the people are have some income and they can afford to buy water and food, and provide better living conditions for their families or themselves. They may have better services such as communication.

While in the areas where income poverty is high, this may be due to have lack of employment in the area; less development. The people have no stable income. Industries and businesses close down or relocate away from the area.
5.0 An example of regional inequalities in the northeast and the southwest of Brazil due to land, sea and air routes.

Regional inequalities are difficult to overcome because the investments and government focus are on the core region and land, sea, and air routes in the northeast are very accessible and the soils are rich in nutrients. Due to this reason, development in São Paulo is much greater than in SERENO.

São Paulo has higher soil which causes the agricultural productivity to fall. The accessibility of roads lacking, there is the area is very isolated.

Although tourism is higher, São Paulo’s standard of living is much better than SERENO. Due to its increasing development, the economy of the region is increasing. The area’s GDP have increased, and maintaining lower prices have also increased. They can afford to buy more goods, thus they have better living conditions. They have clean water supply, food, electricity, better sanitation and education. They are more literate, have better health care, and medical facilities. The education of the people of SERENO is much better, therefore, the people are highly skilled, the job opportunities are higher due to industries, businesses growing and in São Paulo.

As a result of this, many of the people, especially the young males migrate to São Paulo looking for better lives. The young male migration is very evident due to lack of jobs and a lack of education provided.

As a result, the area is isolated. The area is isolated with low-skilled people and due to their feeling of rejuvenate productivity, which they depend on, the jobs are scarce. Many businesses close down. The people’s increasing prices barely is endured. They do not spend much as they could not afford due to uncertain income.
Examiner comment – grade E

This performance is uneven with almost all the marks derived from (b) and learned material. The candidate seems to lack the skills to interpret Fig. 3 effectively. Three lines of writing for (a)(i) are insufficient for a mark allocation of five and the detail of the map, its overall pattern and complexities and anomalies are not apparent. In (ii), the question appears to have been misread or misinterpreted as the explanation given is of the actual pattern in Fig. 3, rather than of the index and the map representation. As such the rare award of zero is justified. The response to (b) is of different character and a satisfactory standard. Taking two regions in Brazil, it develops the context broadly, showing greater knowledge and understanding than skills in selecting, directing and applying the material to the actual question. The sense of difficulty it conveys is clear, however the assessment offered seems overstated. This may, in part, be an issue of expression for a candidate whose first language is not English.

Mark awarded = 10 out of 25